Liu Jiaolong, Zhang Siyu, Qu Dan, Zhou Xuejiao, Yin Moxuan, Wang Chenxuan, Zhang Xuelin, Li Sichen, Zhang Peijun, Zhou Yuqi, Tao Kai, Li Mengyang, Wei Bing, Wu Hongjing
School of Physics, Xidian University, Xi'an, 710071, People's Republic of China.
School of Advanced Materials and Nanotechnology, State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, People's Republic of China.
Nanomicro Lett. 2024 Sep 27;17(1):24. doi: 10.1007/s40820-024-01515-0.
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies, as well as veiled dielectric-responsive character, are instrumental in electromagnetic dissipation. Conventional methods, however, constrain their delicate constructions. Herein, an innovative alternative is proposed: carrageenan-assistant cations-regulated (CACR) strategy, which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix. This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction, benefiting the delicate construction of defects-rich heterostructures in MS/carbon composites (M-CAs). Impressively, these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and, simultaneously, induct local asymmetry of electronic structure to evoke large dipole moment, ultimately leading to polarization coupling, i.e., defect-type interfacial polarization. Such "Janus effect" (Janus effect means versatility, as in the Greek two-headed Janus) of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time. Consequently, the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm, compared to sulfur vacancies-free CAs without any dielectric response. Harnessing defects-rich heterostructures, this one-pot CACR strategy may steer the design and development of advanced nanomaterials, boosting functionality across diverse application domains beyond electromagnetic response.
富含缺陷的异质界面与可调节的晶相和原子空位相结合,以及隐蔽的介电响应特性,有助于电磁耗散。然而,传统方法限制了它们的精细结构。在此,提出了一种创新的替代方法:卡拉胶辅助阳离子调控(CACR)策略,该策略可诱导一系列硫化物纳米颗粒原位扎根于碳基体表面。这种独特的结构源于硫化物的策略性空位形成能和硫化物与碳载体之间的强相互作用,有利于在MS/碳复合材料(M-CAs)中精细构建富含缺陷的异质结构。令人印象深刻的是,首次发现这些产生的硫空位增强了异质界面处的电子积累/消耗能力,同时诱导电子结构的局部不对称以引发大偶极矩,最终导致极化耦合,即缺陷型界面极化。这种界面硫空位的“两面神效应”(两面神效应意味着多功能性,就像希腊神话中的双头两面神)首次通过理论和实验研究得到直观证实。因此,与没有任何介电响应的无硫空位的CAs相比,富含硫空位的异质结构Co/Ni-CAs在仅1.8毫米处显示出6.76 GHz的宽吸收带宽。利用富含缺陷的异质结构,这种一锅法CACR策略可能会引领先进纳米材料的设计和开发,推动跨电磁响应以外的各种应用领域的功能提升。