Suppr超能文献

代谢足迹与 T 细胞生命周期的逻辑。

Metabolic footprint and logic through the T cell life cycle.

机构信息

Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA.

Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA.

出版信息

Curr Opin Immunol. 2024 Dec;91:102487. doi: 10.1016/j.coi.2024.102487. Epub 2024 Sep 21.

Abstract

A simple definition of life is a system that can self-replicate (proliferation) and self-sustain (metabolism). At the cellular level, metabolism has evolved to drive proliferation, which requires energy and building blocks to duplicate cellular biomass before division. T lymphocytes (or T cells) are required for adaptive immune responses, protecting us against invading and malignant agents capable of hyper-replication. To gain a competitive advantage over these agents, activated T cells can duplicate their biomass and divide into two daughter cells in as short as 2-6 hours, considered the fastest cell division among all cell types in vertebrates. Thus, the primary task of cellular metabolism has evolved to commit available resources to drive T cell hyperproliferation. Beyond that, the T cell life cycle involves an ordered series of fate-determining events that drive cells to transition between discrete cell states. At the life stages not involved in hyperproliferation, T cells engage metabolic programs that are more flexible to sustain viability and maintenance and sometimes are fine-tuned to support specific cellular activities. Here, we focus on the central carbon metabolism, which is most relevant to cell proliferation. We provide examples of how the changes in the central carbon metabolism may or may not change the fate of T cells and further explore a few conceptual frameworks, such as metabolic flexibility, the Goldilocks Principle, overflow metabolism, and effector-signaling metabolites, in the context of T cell fate transitions.

摘要

生命的一个简单定义是能够自我复制(增殖)和自我维持(新陈代谢)的系统。在细胞水平上,新陈代谢已经进化到能够驱动增殖,这需要能量和构建块来复制细胞生物量,然后再进行分裂。T 淋巴细胞(或 T 细胞)是适应性免疫反应所必需的,它们可以保护我们免受能够过度复制的入侵和恶性病原体的侵害。为了在这些病原体中获得竞争优势,激活的 T 细胞可以在短短 2-6 小时内复制其生物量并分裂成两个子细胞,这被认为是脊椎动物所有细胞类型中最快的细胞分裂。因此,细胞代谢的主要任务已经进化为将可用资源用于驱动 T 细胞过度增殖。除此之外,T 细胞的生命周期涉及一系列有序的命运决定事件,这些事件驱动细胞在离散的细胞状态之间进行转换。在不涉及过度增殖的生命阶段,T 细胞会参与代谢程序,这些程序更灵活,以维持生存能力和维持,有时还会微调以支持特定的细胞活动。在这里,我们专注于与细胞增殖最相关的中心碳代谢。我们提供了一些例子,说明中心碳代谢的变化可能会或可能不会改变 T 细胞的命运,并进一步探讨了一些概念框架,如代谢灵活性、金发姑娘原则、代谢溢出和效应器信号代谢物,在 T 细胞命运转变的背景下。

相似文献

1
Metabolic footprint and logic through the T cell life cycle.代谢足迹与 T 细胞生命周期的逻辑。
Curr Opin Immunol. 2024 Dec;91:102487. doi: 10.1016/j.coi.2024.102487. Epub 2024 Sep 21.
2
Metabolic checkpoints in activated T cells.激活 T 细胞中的代谢检查点。
Nat Immunol. 2012 Oct;13(10):907-15. doi: 10.1038/ni.2386. Epub 2012 Sep 18.
6
Metabolic regulation of T cell differentiation and function.T细胞分化与功能的代谢调控
Mol Immunol. 2015 Dec;68(2 Pt C):497-506. doi: 10.1016/j.molimm.2015.07.027. Epub 2015 Aug 12.
8
The Natural History of T Cell Metabolism.T 细胞代谢的自然史。
Int J Mol Sci. 2021 Jun 24;22(13):6779. doi: 10.3390/ijms22136779.
10
Serine Is an Essential Metabolite for Effector T Cell Expansion.丝氨酸是效应 T 细胞扩增的必需代谢物。
Cell Metab. 2017 Feb 7;25(2):345-357. doi: 10.1016/j.cmet.2016.12.011. Epub 2017 Jan 19.

本文引用的文献

5
Mitochondrial ATP generation is more proteome efficient than glycolysis.线粒体 ATP 的生成比糖酵解更具蛋白质组效率。
Nat Chem Biol. 2024 Sep;20(9):1123-1132. doi: 10.1038/s41589-024-01571-y. Epub 2024 Mar 6.
6
Nutrients: Signal 4 in T cell immunity.营养素:T 细胞免疫中的信号 4。
J Exp Med. 2024 Mar 4;221(3). doi: 10.1084/jem.20221839. Epub 2024 Feb 27.
8
Metabolic waypoints during T cell differentiation.T 细胞分化过程中的代谢转折点。
Nat Immunol. 2024 Feb;25(2):206-217. doi: 10.1038/s41590-023-01733-5. Epub 2024 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验