Rowsell Elizabeth, Massingberd-Mundy Felicity, Walker Andy, Linthwaite Mark, Skoufa Zinovia, Coe Andrew, Shapcott Stephen, Paterson James
Johnson Matthey Plc , London, UK.
BP Chemicals Ltd., Hull Site, Saltend, East Riding of Yorkshire , Yorkshire, UK.
Philos Trans A Math Phys Eng Sci. 2024 Nov 9;382(2282):20230265. doi: 10.1098/rsta.2023.0265. Epub 2024 Sep 23.
As part of its move towards net zero, the chemical industry, over time, will transition away from fossil-based chemical feedstocks towards more sustainable, 'green' carbon-biomass, recycled waste and captured carbon dioxide. One gateway to transforming these feedstocks into the vital chemicals and fuels society relies on is via synthesis gas or 'syngas'-a gaseous mixture of chemical building blocks (H, CO and CO). While today the majority of syngas is produced via steam reforming of natural gas, commercially available technologies are enabling syngas production and transformation from sustainable feedstocks. The optimization of sustainable syngas technologies would not be possible without the integrated development of both catalyst and process technology and the associated skills in chemistry and chemical engineering. This paper covers three example technologies that are unlocking the role of syngas as a gateway to sustainable fuels and chemicals and highlights the innovative developments in catalyst and process design that have enabled their optimization and commercialization. This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.
作为迈向净零排放的一部分,随着时间的推移,化学工业将从基于化石的化学原料转向更可持续的“绿色”碳生物质、回收废料和捕获的二氧化碳。将这些原料转化为社会所依赖的重要化学品和燃料的一个途径是通过合成气,即一种由化学组成部分(氢气、一氧化碳和二氧化碳)构成的气体混合物。虽然目前大多数合成气是通过天然气的蒸汽重整生产的,但现有的商业技术能够实现从可持续原料生产和转化合成气。如果没有催化剂和工艺技术的综合发展以及化学和化学工程方面的相关技能,就不可能实现可持续合成气技术的优化。本文介绍了三种能够发挥合成气作为通往可持续燃料和化学品途径作用的示例技术,并强调了催化剂和工艺设计方面的创新发展,这些发展使其得以优化和商业化。本文是“面向未来化学工业的绿色碳”讨论会特刊的一部分。