Suppr超能文献

探索并解释孟德尔随机化中基因驱动的效应异质性

Exploring and Accounting for Genetically Driven Effect Heterogeneity in Mendelian Randomization.

作者信息

Jaitner Annika, Tsaneva-Atanasova Krasimira, Freathy Rachel M, Bowden Jack

机构信息

Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.

Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK.

出版信息

Genet Epidemiol. 2025 Jan;49(1):e22587. doi: 10.1002/gepi.22587. Epub 2024 Sep 22.

Abstract

Mendelian randomization (MR) is a framework to estimate the causal effect of a modifiable health exposure, drug target or pharmaceutical intervention on a downstream outcome by using genetic variants as instrumental variables. A crucial assumption allowing estimation of the average causal effect in MR, termed homogeneity, is that the causal effect does not vary across levels of any instrument used in the analysis. In contrast, the science of pharmacogenetics seeks to actively uncover and exploit genetically driven effect heterogeneity for the purposes of precision medicine. In this study, we consider a recently proposed method for performing pharmacogenetic analysis on observational data-the Triangulation WIthin a STudy (TWIST) framework-and explore how it can be combined with traditional MR approaches to properly characterise average causal effects and genetically driven effect heterogeneity. We propose two new methods which not only estimate the genetically driven effect heterogeneity but also enable the estimation of a causal effect in the genetic group with and without the risk allele separately. Both methods utilise homogeneity-respecting and homogeneity-violating genetic variants and rely on a different set of assumptions. Using data from the ALSPAC study, we apply our new methods to estimate the causal effect of smoking before and during pregnancy on offspring birth weight in mothers whose genetics mean they find it (relatively) easier or harder to quit smoking.

摘要

孟德尔随机化(MR)是一种通过使用基因变异作为工具变量来估计可改变的健康暴露、药物靶点或药物干预对下游结局的因果效应的框架。在MR中允许估计平均因果效应的一个关键假设,称为同质性,是因果效应在分析中使用的任何工具变量的各个水平上不会变化。相比之下,药物遗传学的科学旨在积极发现和利用基因驱动的效应异质性,以实现精准医学的目的。在本研究中,我们考虑一种最近提出的对观察数据进行药物遗传学分析的方法——研究内三角测量(TWIST)框架,并探讨如何将其与传统的MR方法相结合,以恰当地表征平均因果效应和基因驱动的效应异质性。我们提出了两种新方法,它们不仅可以估计基因驱动的效应异质性,还能够分别在有和没有风险等位基因的基因组中估计因果效应。这两种方法都利用了尊重同质性和违反同质性的基因变异,并依赖于不同的假设集。使用来自阿冯纵向父母与儿童发育研究(ALSPAC)的数据,我们应用我们的新方法来估计在怀孕前和怀孕期间吸烟对其遗传学特征意味着她们发现戒烟(相对)更容易或更难的母亲的后代出生体重的因果效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37e2/11656040/70dc1ca20e6b/GEPI-49-0-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验