Bamford Sarah E, Gardner Wil, Winkler David A, Muir Benjamin W, Alahakoon Damminda, Pigram Paul J
Centre for Materials and Surface Science and Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, Victoria 3086, Australia.
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2516-2528. doi: 10.1021/jasms.4c00318. Epub 2024 Sep 22.
Secondary ion mass spectrometry (SIMS) is a powerful analytical technique for characterizing the molecular and elemental composition of surfaces. Individual mass spectra can provide information about the mean surface composition, while spatial mapping can elucidate the spatial distributions of molecular species in 2D and 3D with no prior labeling of molecular targets. The data sets produced by SIMS techniques are large and inherently complex, often containing subtle relationships between spatial and molecular features. Machine learning algorithms are well suited to exploring this complexity, making them ideal for data analysis, interpretation, and visualization of SIMS data sets. One such algorithm, the self-organizing map (SOM), is particularly well suited to clustering similar samples and reducing the dimensionality of hyperspectral data sets. Here, we present an introduction to the SOM, a concise mathematical description, and recent examples of its use in SIMS and other related mass spectrometry techniques. These examples demonstrate how SOMs may be used to interpret high volumes of individual mass spectra, imaging, or depth profiling data sets. This review will be useful for specialists in SIMS and other mass spectral techniques seeking to explore self-organizing maps for data analysis.
二次离子质谱法(SIMS)是一种用于表征表面分子和元素组成的强大分析技术。单个质谱图可以提供有关平均表面组成的信息,而空间映射可以在无需对分子靶点进行预先标记的情况下,阐明二维和三维中分子物种的空间分布。SIMS技术产生的数据集规模庞大且本质上复杂,常常包含空间和分子特征之间的微妙关系。机器学习算法非常适合探索这种复杂性,使其成为SIMS数据集的数据分析、解释和可视化的理想选择。一种这样的算法,即自组织映射(SOM),特别适合对相似样本进行聚类并降低高光谱数据集的维度。在此,我们介绍SOM,给出其简洁的数学描述,并展示其在SIMS及其他相关质谱技术中的最新应用实例。这些实例展示了SOM如何用于解释大量的单个质谱图、成像或深度剖析数据集。本综述对于寻求探索自组织映射以进行数据分析的SIMS及其他质谱技术专家将有所帮助。