Centre for Materials and Surface Science and Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria 3086, Australia.
La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia.
Anal Chem. 2020 May 5;92(9):6587-6597. doi: 10.1021/acs.analchem.0c00349. Epub 2020 Apr 13.
Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer systems. Polymer microarrays enable the high-throughput comparison of material physical and chemical properties-such as surface chemistry and properties like cell attachment or protein adsorption-in order to identify correlations that can progress materials development. A challenge for this approach is to accurately discriminate between highly similar polymer chemistries or identify heterogeneities within individual polymer spots. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) offers unique potential in this regard, capable of describing the chemistry associated with the outermost layer of a sample with high spatial resolution and chemical sensitivity. However, this comes at the cost of generating large scale, complex hyperspectral imaging data sets. We have demonstrated previously that machine learning is a powerful tool for interpreting ToF-SIMS images, describing a method for color-tagging the output of a self-organizing map (SOM). This reduces the entire hyperspectral data set to a single reconstructed color similarity map, in which the spectral similarity between pixels is represented by color similarity in the map. Here, we apply the same methodology to a ToF-SIMS image of a printed polymer microarray for the first time. We report complete, single-pixel molecular discrimination of the 70 unique homopolymer spots on the array while also identifying intraspot heterogeneities thought to be related to intermixing of the polymer and the pHEMA coating. In this way, we show that the SOM can identify layers of similarity and clusters in the data, both with respect to polymer backbone structures and their individual side groups. Finally, we relate the output of the SOM analysis with fluorescence data from polymer-protein adsorption studies, highlighting how polymer performance can be visualized within the context of the global topology of the data set.
组合方法在材料发现方面具有很大的潜力,可以快速开发新型聚合物体系。聚合物微阵列能够高通量地比较材料的物理和化学性质,如表面化学性质以及细胞附着或蛋白质吸附等性质,从而确定可以推动材料发展的相关性。这种方法的一个挑战是要准确区分高度相似的聚合物化学性质,或者识别单个聚合物点内的异质性。飞行时间二次离子质谱(ToF-SIMS)在这方面具有独特的潜力,能够以高空间分辨率和化学灵敏度描述与样品最外层相关的化学性质。然而,这是以生成大规模、复杂的高光谱成像数据集为代价的。我们之前已经证明,机器学习是解释 ToF-SIMS 图像的强大工具,可以描述一种对自组织图(SOM)输出进行颜色标记的方法。这将整个高光谱数据集简化为单个重建的颜色相似性图,其中像素之间的光谱相似性由图中的颜色相似性表示。在这里,我们首次将相同的方法应用于打印聚合物微阵列的 ToF-SIMS 图像。我们报告了对该阵列上 70 个独特均聚物点的完整、单像素分子区分,同时还确定了点内异质性,这些异质性被认为与聚合物和 pHEMA 涂层的混合有关。通过这种方式,我们表明 SOM 可以识别数据中的相似性层和聚类,无论是针对聚合物主链结构还是它们的单个侧基。最后,我们将 SOM 分析的输出与聚合物-蛋白质吸附研究的荧光数据相关联,突出了如何在数据集的全局拓扑结构背景下可视化聚合物性能。