Suppr超能文献

我们是在拟合数据还是噪声?分析药物、材料和分子发现中常用数据集的预测能力。

Are we fitting data or noise? Analysing the predictive power of commonly used datasets in drug-, materials-, and molecular-discovery.

作者信息

Crusius Daniel, Cipcigan Flaviu, Biggin Philip C

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

IBM Research Europe, The Hartree Centre STFC Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, UK.

出版信息

Faraday Discuss. 2025 Jan 14;256(0):304-321. doi: 10.1039/d4fd00091a.

Abstract

Data-driven techniques for establishing quantitative structure property relations are a pillar of modern materials and molecular discovery. Fuelled by the recent progress in deep learning methodology and the abundance of new algorithms, it is tempting to chase benchmarks and incrementally build ever more capable machine learning (ML) models. While model evaluation has made significant progress, the intrinsic limitations arising from the underlying experimental data are often overlooked. In the chemical sciences data collection is costly, thus datasets are small and experimental errors can be significant. These limitations of such datasets affect their predictive power, a fact that is rarely considered in a quantitative way. In this study, we analyse commonly used ML datasets for regression and classification from drug discovery, molecular discovery, and materials discovery. We derived maximum and realistic performance bounds for nine such datasets by introducing noise based on estimated or actual experimental errors. We then compared the estimated performance bounds to the reported performance of leading ML models in the literature. Out of the nine datasets and corresponding ML models considered, four were identified to have reached or surpassed dataset performance limitations and thus, they may potentially be fitting noise. More generally, we systematically examine how data range, the magnitude of experimental error, and the number of data points influence dataset performance bounds. Alongside this paper, we release the Python package NoiseEstimator and provide a web-based application for computing realistic performance bounds. This study and the resulting tools will help practitioners in the field understand the limitations of datasets and set realistic expectations for ML model performance. This work stands as a reference point, offering analysis and tools to guide development of future ML models in the chemical sciences.

摘要

用于建立定量结构-性质关系的数据驱动技术是现代材料和分子发现的支柱。受深度学习方法近期进展和大量新算法的推动,人们很容易追求基准并逐步构建能力越来越强的机器学习(ML)模型。虽然模型评估取得了显著进展,但潜在实验数据所带来的内在局限性却常常被忽视。在化学科学领域,数据收集成本高昂,因此数据集规模较小且实验误差可能很大。这些数据集的局限性影响了它们的预测能力,而这一事实很少以定量的方式被考虑。在本研究中,我们分析了药物发现、分子发现和材料发现中常用的用于回归和分类的ML数据集。我们通过基于估计或实际实验误差引入噪声,得出了九个此类数据集的最大和实际性能界限。然后,我们将估计的性能界限与文献中领先ML模型报告的性能进行了比较。在所考虑的九个数据集和相应的ML模型中,有四个被确定已达到或超过数据集性能限制,因此,它们可能只是在拟合噪声。更普遍地说,我们系统地研究了数据范围、实验误差大小和数据点数量如何影响数据集性能界限。与本文同时,我们发布了Python包NoiseEstimator,并提供了一个基于网络的应用程序来计算实际性能界限。这项研究及由此产生的工具将帮助该领域的从业者理解数据集的局限性,并对ML模型性能设定现实的期望。这项工作作为一个参考点,提供分析和工具以指导化学科学领域未来ML模型的开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验