Valsson Ísak, Warren Matthew T, Deane Charlotte M, Magarkar Aniket, Morris Garrett M, Biggin Philip C
Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK.
Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK.
Commun Chem. 2025 Feb 8;8(1):41. doi: 10.1038/s42004-025-01428-y.
Machine learning offers great promise for fast and accurate binding affinity predictions. However, current models lack robust evaluation and fail on tasks encountered in (hit-to-) lead optimisation, such as ranking the binding affinity of a congeneric series of ligands, thereby limiting their application in drug discovery. Here, we address these issues by first introducing a novel attention-based graph neural network model called AEV-PLIG (atomic environment vector-protein ligand interaction graph). Second, we introduce a new and more realistic out-of-distribution test set called the OOD Test. We benchmark our model on this set, CASF-2016, and a test set used for free energy perturbation (FEP) calculations, that not only highlights the competitive performance of AEV-PLIG, but provides a realistic assessment of machine learning models with rigorous physics-based approaches. Moreover, we demonstrate how leveraging augmented data (generated using template-based modelling or molecular docking) can significantly improve binding affinity prediction correlation and ranking on the FEP benchmark (weighted mean PCC and Kendall's τ increases from 0.41 and 0.26 to 0.59 and 0.42). These strategies together are closing the performance gap with FEP calculations (FEP+ achieves weighted mean PCC and Kendall's τ of 0.68 and 0.49 on the FEP benchmark) while being ~400,000 times faster.
机器学习为快速准确的结合亲和力预测带来了巨大希望。然而,当前模型缺乏稳健的评估,并且在(从命中到)先导优化中遇到的任务上表现不佳,例如对同系物系列配体的结合亲和力进行排序,从而限制了它们在药物发现中的应用。在此,我们通过首先引入一种名为AEV-PLIG(原子环境向量-蛋白质配体相互作用图)的基于注意力的新型图神经网络模型来解决这些问题。其次,我们引入了一个新的、更现实的分布外测试集,称为OOD测试。我们在这个数据集、CASF-2016以及用于自由能扰动(FEP)计算的测试集上对我们的模型进行基准测试,这不仅突出了AEV-PLIG的竞争性能,还通过基于严格物理的方法对机器学习模型进行了现实评估。此外,我们展示了利用增强数据(使用基于模板的建模或分子对接生成)如何能够显著提高结合亲和力预测的相关性以及在FEP基准上的排序(加权平均PCC和肯德尔τ从0.41和0.26提高到0.59和0.42)。这些策略共同缩小了与FEP计算的性能差距(FEP+在FEP基准上实现了加权平均PCC和肯德尔τ分别为0.68和0.49),同时速度快约400,000倍。