Yang Xin, Hwang Uiseok, An Zongfu, Baek Jejun, Cho Jaewon, Yang Kaiwei, Park Sul Ki, Kim Soochan
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Small. 2024 Dec;20(50):e2407262. doi: 10.1002/smll.202407262. Epub 2024 Sep 23.
Aqueous Zn-ion batteries are promising and efficient energy storage systems owing to their low cost, high safety, and satisfactory capacity. However, the instability of Zn metal anodes, caused by dendritic growth and parasitic side reactions, hinders their practical application. In this study, a nanophase-separated block copolymer layer that enhances the reversibility of Zn metal anodes is introduced. This layer consists of two components: a high-performance engineering-plastic-based hydrophobic block exhibiting excellent mechanical properties and chemical stability, and a hydrophilic block that significantly improves the interfacial stability of the anode by selectively permeating Zn ions through the separated nanophase channels. Through an improved electrochemical system and scalable fabrication process, this block copolymer provides a feasible approach for the practical application of Zn metal anodes in aqueous energy storage systems.
水系锌离子电池因其低成本、高安全性和令人满意的容量而成为有前景且高效的储能系统。然而,由枝晶生长和寄生副反应导致的锌金属负极的不稳定性阻碍了它们的实际应用。在本研究中,引入了一种增强锌金属负极可逆性的纳米相分离嵌段共聚物层。该层由两个组分组成:一种基于高性能工程塑料的疏水嵌段,具有优异的机械性能和化学稳定性;以及一种亲水嵌段,通过纳米相分离通道选择性渗透锌离子,显著提高了负极的界面稳定性。通过改进的电化学系统和可扩展的制造工艺,这种嵌段共聚物为锌金属负极在水系储能系统中的实际应用提供了一种可行的方法。