Suppr超能文献

利用基因编码的基于干细胞的生物传感器中内含肽介导的荧光信号转位对神经元分化进行实时无创监测。

Real-Time, Non-Invasive Monitoring of Neuronal Differentiation Using Intein-Enabled Fluorescence Signal Translocation in Genetically Encoded Stem Cell-Based Biosensors.

作者信息

Lee Euiyeon, Choi Hye Kyu, Kwon Youngeun, Lee Ki-Bum

机构信息

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea.

出版信息

Adv Funct Mater. 2024 Jul 17;34(29). doi: 10.1002/adfm.202400394. Epub 2024 Feb 23.

Abstract

Real-time and non-invasive monitoring of neuronal differentiation will help increase our understanding of neuronal development and help develop regenerative stem cell therapies for neurodegenerative diseases. Traditionally, reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunofluorescence (IF) staining have been widely used to investigate stem cell differentiation; however, their limitations include endpoint analysis, invasive nature of monitoring, and lack of single-cell-level resolution. Several limitations hamper current approaches to studying neural stem cell (NSC) differentiation. In particular, fixation and staining procedures can introduce artificial changes in cellular morphology, hindering our ability to accurately monitor the progression of the process and fully understand its functional aspects, particularly those related to cellular connectivity and neural network formation. Herein, we report a novel approach to monitor neuronal differentiation of NSCs non-invasively in real-time using cell-based biosensors (CBBs). Our research efforts focused on utilizing intein-mediated protein engineering to design and construct a highly sensitive biosensor capable of detecting a biomarker of neuronal differentiation, hippocalcin. Hippocalcin is a critical protein involved in neurogenesis, and the CBB functions by translocating a fluorescence signal to report the presence of hippocalcin externally. To construct the hippocalcin sensor proteins, hippocalcin bioreceptors, AP2 and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2), were fused to each split-intein carrying split-nuclear localization signal (NLS) peptides, respectively, and a fluorescent protein was introduced as a reporter. Protein splicing (PS) was triggered in the presence of hippocalcin to generate functional signal peptides, which promptly translocated the fluorescence signal to the nucleus. The stem cell-based biosensor showed fluorescence signal translocation only upon neuronal differentiation. Undifferentiated stem cells or cells that had differentiated into astrocytes or oligodendrocytes did not show fluorescence signal translocation. The number of differentiated neurons was consistent with that measured by conventional IF staining. Furthermore, this approach allowed for the monitoring of neuronal differentiation at an earlier stage than that detected using conventional approaches, and the translocation of fluorescence signal was monitored before the noticeable expression of class III β-tubulin (TuJ1), an early neuronal differentiation marker. We believe that these novel CBBs offer an alternative to current techniques by capturing the dynamics of differentiation progress at the single-cell level and by providing a tool to evaluate how NSCs efficiently differentiate into specific cell types, particularly neurons.

摘要

对神经元分化进行实时、无创监测将有助于增进我们对神经元发育的理解,并有助于开发针对神经退行性疾病的再生干细胞疗法。传统上,逆转录聚合酶链反应(RT-PCR)、蛋白质免疫印迹法和免疫荧光(IF)染色已被广泛用于研究干细胞分化;然而,它们的局限性包括终点分析、监测的侵入性以及缺乏单细胞水平的分辨率。有几个局限性阻碍了当前研究神经干细胞(NSC)分化的方法。特别是,固定和染色程序会在细胞形态上引入人为变化,妨碍我们准确监测该过程的进展并全面理解其功能方面,尤其是那些与细胞连接和神经网络形成相关的方面。在此,我们报告一种使用基于细胞的生物传感器(CBB)实时、无创监测神经干细胞神经元分化的新方法。我们的研究工作集中在利用内含肽介导的蛋白质工程来设计和构建一种能够检测神经元分化生物标志物——海马钙结合蛋白的高灵敏度生物传感器。海马钙结合蛋白是一种参与神经发生的关键蛋白质,CBB通过转位荧光信号来在外部报告海马钙结合蛋白的存在。为构建海马钙结合蛋白传感器蛋白,分别将海马钙结合蛋白生物受体AP2和谷氨酸离子型受体AMPA2型亚基(GRIA2)与携带分裂核定位信号(NLS)肽的每个分裂内含肽融合,并引入一种荧光蛋白作为报告分子。在海马钙结合蛋白存在的情况下触发蛋白质剪接(PS)以产生功能性信号肽,其迅速将荧光信号转位至细胞核。基于干细胞的生物传感器仅在神经元分化时显示荧光信号转位。未分化的干细胞或已分化为星形胶质细胞或少突胶质细胞的细胞未显示荧光信号转位。分化神经元的数量与通过传统IF染色测量的数量一致。此外,这种方法能够在比使用传统方法检测到的更早阶段监测神经元分化,并且在早期神经元分化标志物III类β-微管蛋白(TuJ1)明显表达之前监测荧光信号的转位。我们相信,这些新型CBB通过在单细胞水平捕捉分化进程的动态,并通过提供一种工具来评估神经干细胞如何有效地分化为特定细胞类型,特别是神经元细胞,为当前技术提供了一种替代方案。

相似文献

本文引用的文献

5
Biosensors for healthcare: current and future perspectives.用于医疗保健的生物传感器:当前和未来的视角。
Trends Biotechnol. 2023 Mar;41(3):374-395. doi: 10.1016/j.tibtech.2022.12.005. Epub 2022 Dec 23.
6
In vivo protein-based biosensors: seeing metabolism in real time.体内基于蛋白质的生物传感器:实时观察新陈代谢
Trends Biotechnol. 2023 Jan;41(1):19-26. doi: 10.1016/j.tibtech.2022.07.002. Epub 2022 Jul 31.
8
Programming cell-free biosensors with DNA strand displacement circuits.利用 DNA 链置换电路编程无细胞生物传感器。
Nat Chem Biol. 2022 Apr;18(4):385-393. doi: 10.1038/s41589-021-00962-9. Epub 2022 Feb 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验