Suppr超能文献

具有缺失数据的动态结构方程模型:关于……和……的数据要求

Dynamic Structural Equation Models with Missing Data: Data Requirements on and .

作者信息

Fang Yuan, Wang Lijuan

机构信息

Department of Psychology, University of Notre Dame.

出版信息

Struct Equ Modeling. 2024;31(5):891-908. doi: 10.1080/10705511.2023.2287967. Epub 2024 Feb 22.

Abstract

Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the research gap, we evaluated how well the fixed effects and variance parameters in two-level bivariate VAR models are recovered under different missingness percentages, sample sizes, the number of time points, and heterogeneity in missingness distributions through two simulation studies. To facilitate the use of DSEM under customized data and model scenarios (different from those in our simulations), we provided illustrative examples of how to conduct Monte Carlo simulations in M to determine whether a data configuration is sufficient to obtain accurate and precise results from a specific DSEM.

摘要

动态结构方程建模(DSEM)是分析密集纵向数据的一种有用技术。应用DSEM的一个挑战是缺失数据问题。然而,缺失数据对DSEM的影响,尤其是对广泛应用的DSEM(如二级向量自回归(VAR)交叉滞后模型)的影响,尚未得到充分研究。为了填补这一研究空白,我们通过两项模拟研究评估了在不同的缺失率、样本量、时间点数以及缺失分布的异质性情况下,二级双变量VAR模型中的固定效应和方差参数的恢复情况。为便于在定制的数据和模型场景(不同于我们模拟中的场景)下使用DSEM,我们提供了如何在M中进行蒙特卡罗模拟的示例,以确定一种数据配置是否足以从特定的DSEM中获得准确和精确的结果。

相似文献

7
Measurement in Intensive Longitudinal Data.密集纵向数据中的测量
Struct Equ Modeling. 2021;28(5):807-822. doi: 10.1080/10705511.2021.1915788. Epub 2021 May 24.
10
Two-Level Dynamic Structural Equation Models with Small Samples.小样本的两级动态结构方程模型
Struct Equ Modeling. 2019;26(6):948-966. doi: 10.1080/10705511.2019.1578657. Epub 2019 Mar 28.

本文引用的文献

2
Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus.在Stan、JAGS和Mplus中拟合多层向量自回归模型。
Struct Equ Modeling. 2022;29(3):452-475. doi: 10.1080/10705511.2021.1911657. Epub 2021 Sep 14.
3
Measurement in Intensive Longitudinal Data.密集纵向数据中的测量
Struct Equ Modeling. 2021;28(5):807-822. doi: 10.1080/10705511.2021.1915788. Epub 2021 May 24.
5
Two-Level Dynamic Structural Equation Models with Small Samples.小样本的两级动态结构方程模型
Struct Equ Modeling. 2019;26(6):948-966. doi: 10.1080/10705511.2019.1578657. Epub 2019 Mar 28.
8
Handling Missing Data in the Modeling of Intensive Longitudinal Data.密集纵向数据建模中的缺失数据处理
Struct Equ Modeling. 2018;25(5):715-736. doi: 10.1080/10705511.2017.1417046. Epub 2018 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验