Fang Yuan, Wang Lijuan
Department of Psychology, University of Notre Dame.
Struct Equ Modeling. 2024;31(5):891-908. doi: 10.1080/10705511.2023.2287967. Epub 2024 Feb 22.
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the research gap, we evaluated how well the fixed effects and variance parameters in two-level bivariate VAR models are recovered under different missingness percentages, sample sizes, the number of time points, and heterogeneity in missingness distributions through two simulation studies. To facilitate the use of DSEM under customized data and model scenarios (different from those in our simulations), we provided illustrative examples of how to conduct Monte Carlo simulations in M to determine whether a data configuration is sufficient to obtain accurate and precise results from a specific DSEM.
动态结构方程建模(DSEM)是分析密集纵向数据的一种有用技术。应用DSEM的一个挑战是缺失数据问题。然而,缺失数据对DSEM的影响,尤其是对广泛应用的DSEM(如二级向量自回归(VAR)交叉滞后模型)的影响,尚未得到充分研究。为了填补这一研究空白,我们通过两项模拟研究评估了在不同的缺失率、样本量、时间点数以及缺失分布的异质性情况下,二级双变量VAR模型中的固定效应和方差参数的恢复情况。为便于在定制的数据和模型场景(不同于我们模拟中的场景)下使用DSEM,我们提供了如何在M中进行蒙特卡罗模拟的示例,以确定一种数据配置是否足以从特定的DSEM中获得准确和精确的结果。