Ramesh Aparna, Das Tarak Nath, Maji Tapas Kumar, Ghosh Goutam
Centre for Nano and Soft Matter Sciences (CeNS) Shivanapura, Dasanapura Hobli Bangalore 562162 India
Academy of Scientific and Innovation Research (AcSIR) Ghaziabad 201002 India.
Chem Sci. 2024 Sep 9;15(39):16355-66. doi: 10.1039/d4sc05016a.
Herein, we explore the intricate pathway complexity, focusing on the dynamic interplay between kinetic and thermodynamic states, during the supramolecular self-assembly of peptides. We uncover a multiresponsive chiroptical switching phenomenon influenced by temperature, denaturation and content of cosolvent in peptide self-assembly through pathway complexity (kinetic thermodynamic state). Particularly noteworthy is the observation of chiroptical switching during the denaturation process, marking an unprecedented phenomenon in the literature. Furthermore, the variation in cosolvent contents produces notable chiroptical switching effects, emphasizing their infrequent incidence. Such chiroptical switching yields switchable piezoresponsive peptide-based nanomaterials, demonstrating the potential for dynamic control over material properties. In essence, our work pioneers the ability to control piezoresponsive behavior by transforming nanostructures from kinetic to thermodynamic states through pathway complexity. This approach provides new insights and opportunities for tailoring material properties in self-assembled systems.
在此,我们探讨了肽的超分子自组装过程中复杂的途径复杂性,重点关注动力学和热力学状态之间的动态相互作用。我们通过途径复杂性(动力学 - 热力学状态)揭示了一种受温度、变性和共溶剂含量影响的多响应手性光开关现象。特别值得注意的是在变性过程中观察到的手性光开关现象,这在文献中是前所未有的。此外,共溶剂含量的变化产生了显著的手性光开关效应,凸显了它们不常见的发生率。这种手性光开关产生了可切换的基于肽的压阻纳米材料,展示了对材料特性进行动态控制的潜力。本质上,我们的工作开创了通过途径复杂性将纳米结构从动力学状态转变为热力学状态来控制压阻行为的能力。这种方法为在自组装系统中定制材料特性提供了新的见解和机会。