Suppr超能文献

马德里市丰富的交通数据集:整合来自交通传感器、道路基础设施、日历数据和天气数据的数据。

Enriched traffic datasets for the city of Madrid: Integrating data from traffic sensors, the road infrastructure, calendar data and weather data.

作者信息

Gómez Iván, Ilarri Sergio

机构信息

Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, I3A, Zaragoza, Aragón 50018, Spain.

出版信息

Data Brief. 2024 Aug 29;57:110878. doi: 10.1016/j.dib.2024.110878. eCollection 2024 Dec.

Abstract

The proliferation of urban areas and the concurrent increase in vehicular mobility have escalated the urgency for advanced traffic management solutions. This data article introduces two traffic datasets from Madrid, collected between June 2022 and February 2024, to address the challenges of traffic management in urban areas. The first dataset provides detailed traffic flow measurements (vehicles per hour) from urban sensors and road networks, enriched with weather data, calendar data and road infrastructure details from OpenStreetMap. This combination allows for an in-depth analysis of urban mobility. Through preprocessing, data quality is ensured by eliminating inconsistent sensor readings. The second dataset is enhanced for advanced predictive modelling. It includes time-based transformations and a tailored preprocessing pipeline that standardizes numeric data, applies one-hot encoding to categorical features, and uses ordinal encoding for specific features. In constructing the datasets, we initially employed the k-means algorithm to cluster data from multiple sensors, thereby highlighting the most representative ones. This clustering can be adapted or modified according to the user's needs, ensuring flexibility for various analyses and applications. This work underscores the importance of advanced datasets in urban planning and highlights the versatility of these resources for multiple practical applications. We highlight the relevance of the collected data for a variety of essential purposes, including traffic prediction, infrastructure planning, studies on the environmental impact of traffic, event planning, and conducting simulations. These datasets not only provide a solid foundation for academic research but also for designing and implementing more effective and sustainable traffic policies. Furthermore, all related datasets, source code, and documentation have been made publicly available, encouraging further research and practical applications in traffic management and urban planning.

摘要

城市区域的扩张以及车辆流动性的同步增加,使得先进交通管理解决方案的紧迫性不断升级。本文介绍了来自马德里的两个交通数据集,这些数据收集于2022年6月至2024年2月之间,旨在应对城市地区交通管理的挑战。第一个数据集提供了来自城市传感器和道路网络的详细交通流量测量数据(每小时车辆数),并辅以天气数据、日历数据以及来自OpenStreetMap的道路基础设施详细信息。这种组合使得对城市交通流动性进行深入分析成为可能。通过预处理,消除不一致的传感器读数以确保数据质量。第二个数据集经过增强以用于先进的预测建模。它包括基于时间的转换和定制的预处理管道,该管道对数值数据进行标准化,对分类特征应用独热编码,并对特定特征使用序数编码。在构建数据集时,我们最初使用k均值算法对来自多个传感器的数据进行聚类,从而突出最具代表性的数据。这种聚类可以根据用户需求进行调整或修改,确保在各种分析和应用中具有灵活性。这项工作强调了先进数据集在城市规划中的重要性,并突出了这些资源在多种实际应用中的通用性。我们强调所收集的数据对于各种重要目的的相关性,包括交通预测、基础设施规划、交通环境影响研究、活动规划以及进行模拟。这些数据集不仅为学术研究提供了坚实的基础,也为设计和实施更有效、更可持续的交通政策提供了基础。此外,所有相关数据集、源代码和文档均已公开,鼓励在交通管理和城市规划方面进行进一步的研究和实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1985/11416623/c743adfc710d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验