Davoudi Fateme, Shadjou Nasrin, Darroudi Mahdieh
Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran.
Institute of Nanotechnology, Urmia University, Urmia, Iran.
Heliyon. 2024 Sep 10;10(18):e37702. doi: 10.1016/j.heliyon.2024.e37702. eCollection 2024 Sep 30.
Alzheimer's disease is characterized by the accumulation of beta-amyloid plaques and neurofibrillary tangles. Effective therapeutic strategies involve inhibiting the formation of beta-amyloid aggregates and destabilizing existing ones. A significant challenge in current treatments is the inability of therapeutic agents to cross the blood-brain barrier, a limitation addressed by employing drug nanocarriers. This study investigates the interactions between memantine, rivastigmine, beta-amyloid structures, and graphene oxide nanocarriers using molecular docking and in silico methods. The goal is to enhance drug development through cost-effective and efficient computational techniques. Results indicate that the binding energies for memantine-beta-amyloid and rivastigmine-beta-amyloid complexes are -9.03 kcal/mol and -7.81 kcal/mol, respectively, suggesting superior stability for the memantine-beta-amyloid complex. The electrostatic energies are -1.91 kcal/mol for memantine and -0.81 kcal/mol for rivastigmine, further supporting the greater stability of the memantine complex. Additionally, memantine's interaction with graphene oxide results in more negative adsorption energy (-92.47 kJ/mol) compared to rivastigmine (-86.36 kJ/mol), indicating a stronger binding affinity. The charge transfer (Q) values are -0.41 kJ/mol for memantine and -0.33 kJ/mol for rivastigmine. The negative enthalpy (ΔH) of -85.71 kJ/mol and Gibbs free energy (ΔG) of -41.52 kJ/mol for the memantine-graphene oxide interaction suggest a spontaneous process. Both memantine and rivastigmine display similar electronic properties, but memantine shows a more effective interaction with graphene oxide, likely due to its amine functional group and spatial configuration. The adsorption energy analysis confirms that memantine forms a more stable complex with graphene oxide than rivastigmine.
阿尔茨海默病的特征是β-淀粉样蛋白斑块和神经原纤维缠结的积累。有效的治疗策略包括抑制β-淀粉样蛋白聚集体的形成并使现有的聚集体不稳定。当前治疗中的一个重大挑战是治疗药物无法穿过血脑屏障,而使用药物纳米载体可以解决这一限制。本研究使用分子对接和计算机模拟方法研究了美金刚、卡巴拉汀、β-淀粉样蛋白结构与氧化石墨烯纳米载体之间的相互作用。目标是通过具有成本效益和高效的计算技术来促进药物开发。结果表明,美金刚-β-淀粉样蛋白和卡巴拉汀-β-淀粉样蛋白复合物的结合能分别为-9.03千卡/摩尔和-7.81千卡/摩尔,这表明美金刚-β-淀粉样蛋白复合物具有更高的稳定性。美金刚的静电能为-1.91千卡/摩尔,卡巴拉汀的静电能为-0.81千卡/摩尔,进一步支持了美金刚复合物具有更高的稳定性。此外,与卡巴拉汀(-86.36千焦/摩尔)相比,美金刚与氧化石墨烯的相互作用导致更负的吸附能(-92.47千焦/摩尔),表明其具有更强的结合亲和力。美金刚的电荷转移(Q)值为-0.41千焦/摩尔,卡巴拉汀的电荷转移(Q)值为-0.33千焦/摩尔。美金刚与氧化石墨烯相互作用的负焓(ΔH)为-85.71千焦/摩尔,吉布斯自由能(ΔG)为-41.52千焦/摩尔,表明这是一个自发过程。美金刚和卡巴拉汀都表现出相似的电子性质,但美金刚与氧化石墨烯的相互作用更有效,这可能是由于其胺官能团和空间构型。吸附能分析证实,美金刚与氧化石墨烯形成的复合物比卡巴拉汀更稳定。