Suppr超能文献

水文变化对水库水资源管理影响的评估:CanESM5模型与优化的SWAT - SVR - LSTM的对比分析

Evaluation of the impact of hydrological changes on reservoir water management: A comparative analysis the CanESM5 model and the optimized SWAT-SVR-LSTM.

作者信息

Xiao Chenyang, Mohammaditab Mohammad

机构信息

College of Resources and Environment, Hubei University of Technology, Wuhan, 430000, Hubei, China.

Sharif University of Technology, Tehran, Iran.

出版信息

Heliyon. 2024 Sep 2;10(18):e37208. doi: 10.1016/j.heliyon.2024.e37208. eCollection 2024 Sep 30.

Abstract

This research examines the impacts of climate change and socio-economic variables on the hydrological cycle, reservoir water management, and hydropower capacity at the Gezhouba Dam. The Gezhouba Dam serves as a crucial hydroelectric power station and dam, playing a vital role in regulating river flow and generating electricity. In this study, an innovative method is employed, combining the Soil and Water Assessment Tool (SWAT), Support Vector Regression (SVR), and Long Short-Term Memory (LSTM) models. This model is optimized using the Developed Thermal Exchange Optimizer. This optimized combined model significantly enhances the reliability and precision of the forecasting inflow and reservoir levels. By utilizing the Canadian Earth System Model version 5 (CanESM5), we examine climate variables across various scenarios of Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP). Under the SSP5-RCP8.5 scenario, the most aggressive in terms of emissions, we project a temperature rise of 2.6 % and a precipitation decrease of 2.7 %. This scenario leads to the most substantial changes in the hydrological cycle and altered river flow patterns. The results show a direct correlation between precipitation and inflow (0.952) and a strong inverse correlation between temperature and inflow (0.893). The study predicts significant decreases in all flow metrics, with mean high flow (Q5) periods affecting hydropower generation, especially under the SSP5-RCP8.5 scenario. Additionally, the filling frequency rate (FFR) and mean filling level (MFL) are projected to decrease, with a more pronounced decline in the far future, indicating a potential compromise of the reservoir's water storage and power generation capabilities, especially under the SSP5-RCP8.5 scenario.

摘要

本研究考察了气候变化和社会经济变量对葛洲坝水文循环、水库水资源管理及水电发电量的影响。葛洲坝是一座至关重要的水电站和大坝,在调节河流水量和发电方面发挥着关键作用。在本研究中,采用了一种创新方法,将土壤和水资源评估工具(SWAT)、支持向量回归(SVR)和长短期记忆(LSTM)模型相结合。该模型使用改进的热交换优化器进行了优化。这种优化后的组合模型显著提高了预测入库流量和水库水位的可靠性和精度。通过使用加拿大地球系统模型第5版(CanESM5),我们研究了代表性浓度路径(RCP)和共享社会经济路径(SSP)各种情景下的气候变量。在排放方面最为激进的SSP5-RCP8.5情景下,预计气温将上升2.6%,降水量将减少2.7%。这种情景导致水文循环发生最显著的变化,并改变了河流流量模式。结果表明,降水量与入库流量之间存在直接相关性(0.952),气温与入库流量之间存在强烈的负相关性(0.893)。该研究预测所有流量指标都将显著下降,平均高流量(Q5)时段会影响水力发电,尤其是在SSP5-RCP8.5情景下。此外,预计蓄水频率率(FFR)和平均蓄水水位(MFL)将下降,在更遥远的未来下降更为明显,这表明水库的蓄水和发电能力可能受到影响,尤其是在SSP5-RCP8.5情景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcea/11416484/35bd70ebda55/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验