Fan Ching-Hsiang, Lo Wei-Chen, Huang Chung-Han, Phan Thi-Nhan, Yeh Chih-Kuang
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1814-1822. doi: 10.1109/TUFFC.2024.3466119. Epub 2025 Jan 8.
Using acoustic vortex tweezers (AVTs) to spatially accumulate microbubbles (MBs) shows promise for enhancing drug delivery efficiency and reducing off-target effects. The strong echogenicity of accumulated MBs also improves diagnostics via conventional ultrasound (US) B-mode imaging. However, the annular high-pressure distribution of AVT inhibits MBs inflow at the inlet, reducing MBs collection. The spatial resolution of US B-mode imaging further limits theranostic applications of AVT-mediated MBs accumulation. To address these challenges, we integrated an AVT waveform with volumetric super-resolution imaging (VSRI) to monitor the dynamic growth of MBs cluster during accumulation. We used a 5-MHz 2-D array transducer for VSRI, employing plane wave pulses interleaved with accumulating pulses to retain MBs at a flow rate of 0.023-0.047 mL/s in a 3-mm vessel phantom. An asymmetrical AVT waveform (AVT ) was produced by modulating the pressure at the MBs inlet compared to the outlet. The effectiveness was validated in rat cerebral vessels for real-time volumetric tracking of MBs clusters. Microscopy observations showed that AVT could quickly gather flowing MBs into cluster without repelling them at a flow rate of 0.023 mL/s. Statistical results indicated that microscopic data correlated better with VSRI than with B-mode images, suggesting VSRI suffices to detect the dynamics of AVT -actuated MBs accumulation in real-time. Additionally, VSRI detected a significant increase in MBs cluster size over time during AVT in the superior sagittal sinus (SSS) of the rat brain. These findings demonstrate that the proposed strategy can accumulate the flowing MBs at a desired location and simultaneously observe this phenomenon.
使用声学涡旋镊子(AVT)在空间上聚集微泡(MBs)有望提高药物递送效率并减少脱靶效应。聚集的微泡的强回声性还可通过传统超声(US)B模式成像改善诊断。然而,AVT的环形高压分布会抑制微泡在入口处的流入,减少微泡的收集。US B模式成像的空间分辨率进一步限制了AVT介导的微泡聚集的诊疗应用。为应对这些挑战,我们将AVT波形与容积超分辨率成像(VSRI)相结合,以监测微泡簇在聚集过程中的动态生长。我们使用5MHz二维阵列换能器进行VSRI,采用平面波脉冲与聚集脉冲交错,以0.023-0.047 mL/s的流速在3mm血管模型中保留微泡。与出口相比,通过调节微泡入口处的压力产生了不对称的AVT波形(AVT )。在大鼠脑血管中对微泡簇进行实时容积跟踪验证了其有效性。显微镜观察表明,AVT能够以0.023 mL/s的流速迅速将流动的微泡聚集为簇,而不会排斥它们。统计结果表明,微观数据与VSRI的相关性优于与B模式图像的相关性,这表明VSRI足以实时检测AVT驱动的微泡聚集的动态过程。此外,VSRI检测到在大鼠脑上矢状窦(SSS)中进行AVT操作期间,微泡簇大小随时间显著增加。这些发现表明,所提出的策略可以在所需位置聚集流动的微泡,并同时观察这一现象。