Suppr超能文献

基于龙卷风的声涡旋镊子用于捕获和操纵微泡。

Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles.

机构信息

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan.

Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701 Taiwan.

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 26;118(4). doi: 10.1073/pnas.2023188118.

Abstract

Spatially concentrating and manipulating biotherapeutic agents within the circulatory system is a longstanding challenge in medical applications due to the high velocity of blood flow, which greatly limits drug leakage and retention of the drug in the targeted region. To circumvent the disadvantages of current methods for systemic drug delivery, we propose tornado-inspired acoustic vortex tweezer (AVT) that generates net forces for noninvasive intravascular trapping of lipid-shelled gaseous microbubbles (MBs). MBs are used in a diverse range of medical applications, including as ultrasound contrast agents, for permeabilizing vessels, and as drug/gene carriers. We demonstrate that AVT can be used to successfully trap MBs and increase their local concentration in both static and flow conditions. Furthermore, MBs signals within mouse capillaries could be locally improved 1.7-fold and the location of trapped MBs could still be manipulated during the initiation of AVT. The proposed AVT technique is a compact, easy-to-use, and biocompatible method that enables systemic drug administration with extremely low doses.

摘要

在循环系统中对生物治疗剂进行空间集中和操作是医学应用中的一个长期挑战,因为血流速度很高,这极大地限制了药物泄漏和药物在目标区域的保留。为了规避当前全身药物递送方法的缺点,我们提出了受旋风启发的声涡旋镊子(AVT),它可以产生净力,用于非侵入性血管内捕获脂质壳气态微泡(MB)。MB 广泛用于多种医学应用,包括作为超声造影剂、用于使血管通透以及作为药物/基因载体。我们证明,AVT 可用于成功捕获 MB 并增加其在静态和流动条件下的局部浓度。此外,在启动 AVT 时,还可以将小鼠毛细血管内的 MB 信号局部提高 1.7 倍,并仍然可以操纵捕获 MB 的位置。所提出的 AVT 技术是一种紧凑、易于使用且生物相容的方法,可通过极低剂量进行全身药物给药。

相似文献

2
Super-Resolution Ultrasound Imaging for Analysis of Microbubbles Cluster by Acoustic Vortex Tweezers.用于通过声学涡旋镊子分析微泡簇的超分辨率超声成像
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1814-1822. doi: 10.1109/TUFFC.2024.3466119. Epub 2025 Jan 8.
3
3-D Ultrafast Ultrasound Imaging of Microbubbles Trapped Using an Acoustic Vortex.使用声涡旋捕获的微泡的 3-D 超快速超声成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3507-3514. doi: 10.1109/TUFFC.2021.3095241. Epub 2021 Nov 23.
8
Acoustic trapping of microbubbles in complex environments and controlled payload release.复杂环境中微泡的声捕获和受控载物释放。
Proc Natl Acad Sci U S A. 2020 Jul 7;117(27):15490-15496. doi: 10.1073/pnas.2003569117. Epub 2020 Jun 22.

引用本文的文献

3
Technology Roadmap of Micro/Nanorobots.微纳机器人技术路线图
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
8
Acoustofluidic tweezers via ring resonance.基于环形共振的声流体镊子。
Sci Adv. 2024 Nov 15;10(46):eads2654. doi: 10.1126/sciadv.ads2654. Epub 2024 Nov 13.

本文引用的文献

1
Electric Tweezers.电动镊子
Nano Today. 2011 Aug;6(4):339-354. doi: 10.1016/j.nantod.2011.05.003. Epub 2011 Jul 12.
2
Noninvasive acoustic manipulation of objects in a living body.活体中物体的无创声操控。
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16848-16855. doi: 10.1073/pnas.2001779117. Epub 2020 Jul 6.
7
A feasibility study of applications of single beam acoustic tweezers.单束声镊应用的可行性研究。
Appl Phys Lett. 2014 Oct 27;105(17):173701. doi: 10.1063/1.4900716. Epub 2014 Oct 28.
8
Trapping of a mie sphere by acoustic pulses: effects of pulse length.声脉冲对微球的捕获:脉冲长度的影响。
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1487-97. doi: 10.1109/TUFFC.2013.2721.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验