Suppr超能文献

纳米环在卟啉/[10]环戊二烯并菲/富勒烯轮烷中更有利于光诱导能量转移而非电荷分离。

Nanohoops Favour Light-Induced Energy Transfer over Charge Separation in Porphyrin/[10]CPP/Fullerene Rotaxanes.

作者信息

Schwer Fabian, Zank Simon, Freiberger Markus, Steudel Fabian M, Geue Niklas, Ye Lei, Barran Perdita E, Drewello Thomas, Guldi Dirk M, von Delius Max

机构信息

Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.

Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413404. doi: 10.1002/anie.202413404. Epub 2024 Nov 11.

Abstract

[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation. In contrast, the nanohoops completely prevented through-space charge separation. This result is likely due to supramolecular "shielding", because charge separation was observed in the thread that acted as reference dyad. On the other hand, the suppression of electron transfer allowed the observation of energy transfer from the porphyrin triplet to the fullerene triplet state with a lifetime of ca. 25 μs. The presence of the interlocked nanohoops therefore leads to a dramatic switch between charge separation and energy transfer. We suggest that our results explain observations made by others in photovoltaic devices comprising nanohoops and may pave the way toward strategic uses of mechanically interlocked architectures in devices that feature (triplet) energy transfer.

摘要

[2]轮烷为研究和调节电荷分离与能量转移提供了独特的机会,因为机械键允许光活性基团进行稳固但空间动态的连接。在这项工作中,我们合成了由中心(氮杂)[10]环戊二烯并卟啉⊃C双加合物配合物和两个锌卟啉封端基组成的[2]轮烷三联体,以研究可移动的纳米环如何影响轮烷亚组分之间光诱导的电荷分离和能量转移。我们发现母体纳米环[10]环戊二烯并卟啉及其缺电子类似物氮杂[10]环戊二烯并卟啉均不积极参与电荷分离。相反,纳米环完全阻止了通过空间的电荷分离。这一结果可能归因于超分子“屏蔽”,因为在充当参考二元体的链中观察到了电荷分离。另一方面,电子转移的抑制使得能够观察到从卟啉三重态到富勒烯三重态的能量转移,其寿命约为25 μs。因此,互锁纳米环的存在导致了电荷分离和能量转移之间的显著切换。我们认为,我们的结果解释了其他人在包含纳米环的光伏器件中所观察到的现象,并可能为在具有(三重态)能量转移功能的器件中战略性地使用机械互锁结构铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/326d/11701370/10842e2fbafe/ANIE-64-e202413404-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验