Molecular Simulation Lab, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Delhi NCR, Uttar Pradesh 201314, India.
Inorg Chem. 2024 Oct 7;63(40):18963-18971. doi: 10.1021/acs.inorgchem.4c03321. Epub 2024 Sep 23.
Due to the recent surge in antibiotic resistance, developing novel antibiotics is the demand of the time, and thus, a precise understanding of the catalytic mechanisms of enzymes involved in antibiotic biosynthesis becomes crucial. Here, we present a comprehensive investigation into the catalytic mechanism of TokK, a freshly characterized B-dependent RSMT enzyme that plays an important role in carbapenem biosynthesis. Using MD simulations, we show how the plasticity of the active site facilitates substrate recognition while the quantum mechanics/molecular mechanics calculations provide a detailed mechanistic understanding of the methyl transfer process, elucidating stereochemical preferences. Notably, we demonstrate the indispensable role of Trp215 in orchestrating the proper orientation of the 5'-dA radical for efficient substrate methylation, which strongly correlates with the previous findings where the mutation of Trp215 has severely affected the enzyme activity.
由于最近抗生素耐药性的激增,开发新型抗生素是当下的需求,因此,精确理解参与抗生素生物合成的酶的催化机制变得至关重要。在这里,我们全面研究了 TokK 的催化机制,TokK 是一种新表征的 B 依赖性 RSMT 酶,在碳青霉烯类抗生素生物合成中发挥着重要作用。通过 MD 模拟,我们展示了活性位点的可塑性如何促进底物识别,而量子力学/分子力学计算则提供了对甲基转移过程的详细机械理解,阐明了立体化学偏好。值得注意的是,我们证明了色氨酸 215 在协调 5'-dA 自由基的适当取向以实现有效底物甲基化方面的不可或缺的作用,这与之前的发现强烈相关,即色氨酸 215 的突变严重影响了酶的活性。