Suppr超能文献

使用SPLASH2从原始测序读数中进行可扩展且无监督的发现。

Scalable and unsupervised discovery from raw sequencing reads using SPLASH2.

作者信息

Kokot Marek, Dehghannasiri Roozbeh, Baharav Tavor, Salzman Julia, Deorowicz Sebastian

机构信息

Department of Algorithmics and Software, Silesian University of Technology, Gliwice, Poland.

Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.

出版信息

Nat Biotechnol. 2024 Sep 23. doi: 10.1038/s41587-024-02381-2.

Abstract

We introduce SPLASH2, a fast, scalable implementation of SPLASH based on an efficient k-mer counting approach for regulated sequence variation detection in massive datasets from a wide range of sequencing technologies and biological contexts. We demonstrate biological discovery by SPLASH2 in single-cell RNA sequencing (RNA-seq) data and in bulk RNA-seq data from the Cancer Cell Line Encyclopedia, including unannotated alternative splicing in cancer transcriptomes and sensitive detection of circular RNA.

摘要

我们推出了SPLASH2,它是基于一种高效的k-mer计数方法对SPLASH进行的快速、可扩展的实现,用于在来自广泛测序技术和生物学背景的海量数据集中检测调控序列变异。我们展示了SPLASH2在单细胞RNA测序(RNA-seq)数据以及来自癌症细胞系百科全书的批量RNA-seq数据中的生物学发现,包括癌症转录组中未注释的可变剪接以及环状RNA的灵敏检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验