Lu Haijiao, Yin Hanqing, Harmer Jeffrey, Xiao Mu, You Jiakang, Chen Peng, Lin Tongen, Du Aijun, Wang Zhiliang, Wang Lianzhou
Nanomaterials Centre, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072, St Lucia, QLD, Australia.
School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, 4001, Brisbane, Australia.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413769. doi: 10.1002/anie.202413769. Epub 2024 Nov 2.
Growing interest in p-block metal single-atom catalysts (PM-SACs) is driven by their low toxicity, economic viability, and transition metal-like catalytic properties. However, selection criteria for p-block single-atom species and catalytic mechanisms of PM-SACs remain unclear. This study explores the catalytic abilities of PM-SACs and their transition metal counterparts (TM-SACs) based on polymetric carbon nitride (PCN) for photocatalytic hydrogen peroxide (HO) production. Using thermodynamic barriers as a key descriptor, it was found that PM-SACs can surpass TM-SACs in HO production due to a lower energy barrier for *OOH intermediate formation resulting from optimized p-p hybridization. Specifically, Sb-SAC based on PCN shows the highest apparent quantum yield of 35.3 % at 400 nm. This study offers a rationale for the utilization of p-block SACs in the context of sustainable chemical synthesis.
对p区金属单原子催化剂(PM-SACs)日益增长的兴趣源于其低毒性、经济可行性以及类似过渡金属的催化性能。然而,p区单原子物种的选择标准和PM-SACs的催化机制仍不明确。本研究基于聚合氮化碳(PCN)探索了PM-SACs及其过渡金属对应物(TM-SACs)在光催化过氧化氢(HO)生成方面的催化能力。以热力学势垒作为关键描述符,研究发现由于优化的p-p杂化导致*OOH中间体形成的能量势垒较低,PM-SACs在HO生成方面能够超越TM-SACs。具体而言,基于PCN的Sb-SAC在400 nm处显示出35.3 %的最高表观量子产率。本研究为在可持续化学合成背景下利用p区单原子催化剂提供了理论依据。