Sharma Drishti, Srivastava Abhishek
Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India.
PeerJ Comput Sci. 2024 Sep 20;10:e2202. doi: 10.7717/peerj-cs.2202. eCollection 2024.
Social media, an undeniable facet of the modern era, has become a primary pathway for disseminating information. Unverified and potentially harmful rumors can have detrimental effects on both society and individuals. Owing to the plethora of content generated, it is essential to assess its alignment with factual accuracy and determine its veracity. Previous research has explored various approaches, including feature engineering and deep learning techniques, that leverage propagation theory to identify rumors. In our study, we place significant importance on examining the emotional and sentimental aspects of tweets using deep learning approaches to improve our ability to detect rumors. Leveraging the findings from the previous analysis, we propose a Sentiment and EMotion driven TransformEr Classifier method (SEMTEC). Unlike the existing studies, our method leverages the extraction of emotion and sentiment tags alongside the assimilation of the content-based information from the textual modality, , the main tweet. This meticulous semantic analysis allows us to measure the user's emotional state, leading to an impressive accuracy rate of 92% for rumor detection on the "PHEME" dataset. The validation is carried out on a novel dataset named "Twitter24". Furthermore, SEMTEC exceeds standard methods accuracy by around 2% on "Twitter24" dataset.
社交媒体作为现代社会不可忽视的一部分,已成为信息传播的主要渠道。未经证实且可能有害的谣言会对社会和个人造成不良影响。由于社交媒体产生的内容繁多,因此评估其与事实准确性的契合度并确定其真实性至关重要。以往的研究探索了多种方法,包括特征工程和深度学习技术,这些方法利用传播理论来识别谣言。在我们的研究中,我们高度重视运用深度学习方法来审视推文的情感和情绪方面,以提高我们检测谣言的能力。基于先前分析的结果,我们提出了一种情感与情绪驱动的Transformer分类器方法(SEMTEC)。与现有研究不同,我们的方法除了从文本模态(即主要推文)中吸收基于内容的信息外,还利用情感和情绪标签的提取。这种细致的语义分析使我们能够衡量用户的情绪状态,在“PHEME”数据集上的谣言检测准确率高达92%。验证是在一个名为“Twitter24”的新数据集上进行的。此外,在“Twitter24”数据集上,SEMTEC比标准方法的准确率高出约2%。