Suppr超能文献

沃尔夫勒姆综合征神经退行性变的临床试验:新设计、终点指标及分析模型

Clinical Trials for Wolfram Syndrome Neurodegeneration: Novel Design, Endpoints, and Analysis Models.

作者信息

Wang Guoqiao, Li Zhaolong Adrian, Chen Ling, Lugar Heather, Hershey Tamara

机构信息

Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA.

Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA.

出版信息

medRxiv. 2024 Sep 11:2024.09.10.24313426. doi: 10.1101/2024.09.10.24313426.

Abstract

OBJECTIVE

Wolfram syndrome, an ultra-rare condition, currently lacks effective treatment options. The rarity of this disease presents significant challenges in conducting clinical trials, particularly in achieving sufficient statistical power (e.g., 80%). The objective of this study is to propose a novel clinical trial design based on real-world data to reduce the sample size required for conducting clinical trials for Wolfram syndrome.

METHODS

We propose a novel clinical trial design with three key features aimed at reducing sample size and improve efficiency: (i) Pooling historical/external controls from a longitudinal observational study conducted by the Washington University Wolfram Research Clinic. (ii) Utilizing run-in data to estimate model parameters. (iii) Simultaneously tracking treatment effects in two endpoints using a multivariate proportional linear mixed effects model.

RESULTS

Comprehensive simulations were conducted based on real-world data obtained through the Wolfram syndrome longitudinal observational study. Our simulations demonstrate that this proposed design can substantially reduce sample size requirements. Specifically, with a bivariate endpoint and the inclusion of run-in data, a sample size of approximately 30 per group can achieve over 80% power, assuming the placebo progression rate remains consistent during both the run-in and randomized periods. In cases where the placebo progression rate varies, the sample size increases to approximately 50 per group.

CONCLUSIONS

For rare diseases like Wolfram syndrome, leveraging existing resources such as historical/external controls and run-in data, along with evaluating comprehensive treatment effects using bivariate/multivariate endpoints, can significantly expedite the development of new drugs.

摘要

目的

沃尔弗勒姆综合征是一种极为罕见的疾病,目前缺乏有效的治疗方案。这种疾病的罕见性给开展临床试验带来了重大挑战,尤其是在实现足够的统计效能(如80%)方面。本研究的目的是基于真实世界数据提出一种新型临床试验设计,以减少沃尔弗勒姆综合征临床试验所需的样本量。

方法

我们提出了一种具有三个关键特征的新型临床试验设计,旨在减少样本量并提高效率:(i)汇集华盛顿大学沃尔弗勒姆研究诊所进行的纵向观察性研究中的历史/外部对照。(ii)利用导入期数据估计模型参数。(iii)使用多变量比例线性混合效应模型同时跟踪两个终点的治疗效果。

结果

基于通过沃尔弗勒姆综合征纵向观察性研究获得的真实世界数据进行了全面模拟。我们的模拟表明,这种提议的设计可以大幅减少样本量要求。具体而言,对于双变量终点并纳入导入期数据的情况,假设在导入期和随机化期安慰剂进展率保持一致,每组约30个样本量即可实现超过80%的效能。在安慰剂进展率不同的情况下,每组样本量增加到约50个。

结论

对于像沃尔弗勒姆综合征这样的罕见疾病,利用历史/外部对照和导入期数据等现有资源,以及使用双变量/多变量终点评估综合治疗效果,可以显著加快新药的研发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95a4/11419225/bbf7f434f71b/nihpp-2024.09.10.24313426v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验