Suppr超能文献

多组学分析沃勒综合征的人源细胞模型揭示了线粒体形态和功能的变化。

Multiomic analysis on human cell model of wolfram syndrome reveals changes in mitochondrial morphology and function.

机构信息

Department of Clinical Genetics, Medical University of Lodz, Pomorska Str. 251, 92-213, Lodz, Poland.

Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

出版信息

Cell Commun Signal. 2021 Nov 20;19(1):116. doi: 10.1186/s12964-021-00791-2.

Abstract

BACKGROUND

Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress.

METHODS

We performed transcriptomic and proteomic analysis on WFS human cell model-skin fibroblasts reprogrammed into induced pluripotent stem (iPS) cells and then into neural stem cells (NSC) with subsequent ER stress induction using tunicamycin (TM). Results were cross-referenced with publicly available RNA sequencing data in hippocampi and hypothalami of mice with WFS1 deficiency.

RESULTS

Proteomic analysis identified specific signal pathways that differ in NSC WFS cells from healthy ones. Next, detailed analysis of the proteins involved in the mitochondrial function showed the down-regulation of subunits of the respiratory chain complexes in NSC WFS cells, as well as the up-regulation of proteins involved in Krebs cycle and glycolysis when compared to the control cells. Based on pathway enrichment analysis we concluded that in samples from mice hippocampi the mitochondrial protein import machinery and OXPHOS were significantly down-regulated.

CONCLUSIONS

Our results show the functional and morphological secondary mitochondrial damage in patients with WFS. Video Abstract.

摘要

背景

Wolfram 综合征(WFS)是一种罕见的常染色体隐性遗传综合征,由于 Wolframin 缺乏和内质网应激增加,导致糖尿病和神经退行性疾病。此外,WFS1 缺乏会导致钙稳态紊乱,并可能改变线粒体动力学。本研究旨在评估在实验性内质网应激下 WFS 人细胞模型中的蛋白质水平和基因转录变化。

方法

我们对 WFS 人细胞模型(皮肤成纤维细胞重编程为诱导多能干细胞(iPS)细胞,然后诱导内质网应激)进行了转录组和蛋白质组分析,然后使用衣霉素(TM)诱导内质网应激。结果与 WFS1 缺陷小鼠海马和下丘脑的公共 RNA 测序数据进行了交叉参考。

结果

蛋白质组分析鉴定出 NSC WFS 细胞与健康细胞之间存在特定的信号通路差异。接下来,对涉及线粒体功能的蛋白质进行详细分析表明,与对照细胞相比,NSC WFS 细胞中的呼吸链复合物亚基下调,而参与克雷布斯循环和糖酵解的蛋白质上调。基于通路富集分析,我们得出结论,在来自小鼠海马的样本中,线粒体蛋白输入机制和 OXPHOS 显著下调。

结论

我们的结果显示 WFS 患者存在功能性和形态学的继发性线粒体损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abda/8605533/77c922ab8da3/12964_2021_791_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验