Suppr超能文献

通过放射组学和深度学习预测肺腺癌患者的EGFR和TP53基因变异

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.

作者信息

Wang Xiao-Yan, Wu Shao-Hong, Ren Jiao, Zeng Yan, Guo Li-Li

机构信息

Department of Radiology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian.

Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.

出版信息

J Thorac Imaging. 2025 May 1;40(3):e0817. doi: 10.1097/RTI.0000000000000817.

Abstract

PURPOSE

This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses.

MATERIALS AND METHODS

A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score.

RESULTS

We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR - and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 - and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model.

CONCLUSION

Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.

摘要

目的

本研究旨在构建基于放射组学和深度学习的渐进式二元分类模型,以预测表皮生长因子受体(EGFR)和TP53突变的存在,并评估模型识别适合酪氨酸激酶抑制剂(TKI)靶向治疗的患者和预后不良患者的能力。

材料与方法

回顾性纳入我院267例接受基因检测和胸部非增强计算机断层扫描的肺腺癌患者。收集临床信息和影像特征,并对所有定义的感兴趣区域(ROI)进行高通量特征采集。我们分别选择特征并构建临床模型、放射组学模型、深度学习模型和集成模型,以预测所有患者的EGFR状态和EGFR阳性患者的TP53状态。每个模型的有效性和可靠性用曲线下面积(AUC)、敏感性、特异性、准确性、精确性和F1分数表示。

结果

我们针对2种不同的二分法构建了7种模型,即临床模型、放射组学模型、深度学习模型、放射组学 - 临床模型、深度学习 - 临床模型、深度学习 - 放射组学模型和深度学习 - 放射组学 - 临床模型。对于EGFR - 和EGFR +,深度学习 - 放射组学 - 临床模型获得最高AUC值0.783(95%CI:0.677 - 0.889),其次是放射组学 - 临床模型、深度学习 - 临床模型和深度学习 - 放射组学模型。在EGFR突变组中,对于TP53 - 和TP53 +,放射组学 - 临床模型获得最高AUC值0.811(95%CI:0.651 - 0.972),其次是深度学习 - 放射组学 - 临床模型和深度学习 - 放射组学模型。

结论

我们基于放射组学和深度学习的渐进式二元分类模型可为临床识别TKI反应者和预后不良者提供良好的参考和补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8902/12005866/c602222ae6f8/rti-40-e0817-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验