Suppr超能文献

纳米片分解水竞争优势的原子层面见解。

Atomic Insights into the Competitive Edge of Nanosheets Splitting Water.

作者信息

Falling Lorenz J, Jang Woosun, Laha Sourav, Götsch Thomas, Terban Maxwell W, Bette Sebastian, Mom Rik, Velasco-Vélez Juan-Jesús, Girgsdies Frank, Teschner Detre, Tarasov Andrey, Chuang Cheng-Hao, Lunkenbein Thomas, Knop-Gericke Axel, Weber Daniel, Dinnebier Robert, Lotsch Bettina V, Schlögl Robert, Jones Travis E

机构信息

Fritz Haber Institute of the Max Planck Society, Berlin 14195, Germany.

School of Natural Sciences, Technical University, Munich 85748, Germany.

出版信息

J Am Chem Soc. 2024 Oct 9;146(40):27886-27902. doi: 10.1021/jacs.4c10312. Epub 2024 Sep 25.

Abstract

The oxygen evolution reaction (OER) provides the protons for many electrocatalytic power-to-X processes, such as the production of green hydrogen from water or methanol from CO. Iridium oxohydroxides (IOHs) are outstanding catalysts for this reaction because they strike a unique balance between activity and stability in acidic electrolytes. Within IOHs, this balance varies with the atomic structure. While amorphous IOHs perform best, they are least stable. The opposite is true for their crystalline counterparts. These rules-of-thumb are used to reduce the loading of scarce IOH catalysts and retain the performance. However, it is not fully understood how activity and stability are related at the atomic level, hampering rational design. Herein, we provide simple design rules (Figure 12) derived from the literature and various IOHs within this study. We chose crystalline IrOOH nanosheets as our lead material because they provide excellent catalyst utilization and a predictable structure. We found that IrOOH signals the chemical stability of crystalline IOHs while surpassing the activity of amorphous IOHs. Their dense bonding network of pyramidal trivalent oxygens (μ-O) provides structural integrity, while allowing reversible reduction to an electronically gapped state that diminishes the destructive effect of reductive potentials. The reactivity originates from coordinative unsaturated edge sites with radical character, i.e., μ-O oxyls. By comparing to other IOHs and literature, we generalized our findings and synthesized a set of simple rules that allow prediction of stability and reactivity of IOHs from atomistic models. We hope that these rules will inspire atomic design strategies for future OER catalysts.

摘要

析氧反应(OER)为许多电催化的能量转化过程提供质子,比如从水中制取绿色氢气或从一氧化碳制取甲醇。羟基氧化铱(IOHs)是该反应的杰出催化剂,因为它们在酸性电解质中的活性和稳定性之间达到了独特的平衡。在IOHs中,这种平衡随原子结构而变化。虽然非晶态IOHs表现最佳,但它们最不稳定。其晶体对应物则相反。这些经验法则被用于减少稀缺的IOH催化剂的负载量并保持性能。然而,在原子层面上活性和稳定性是如何相关的还没有被完全理解,这阻碍了合理设计。在此,我们提供了从文献和本研究中的各种IOHs得出的简单设计规则(图12)。我们选择晶体IrOOH纳米片作为我们的主要材料,因为它们具有出色的催化剂利用率和可预测的结构。我们发现IrOOH表明了晶体IOHs的化学稳定性,同时超过了非晶态IOHs的活性。它们由金字塔形三价氧(μ-O)构成的密集键合网络提供了结构完整性,同时允许可逆还原为电子带隙状态,从而减少还原电位的破坏作用。反应活性源自具有自由基特征的配位不饱和边缘位点,即μ-O氧基。通过与其他IOHs和文献进行比较,我们归纳了我们的发现,并合成了一组简单规则,这些规则能够从原子模型预测IOHs的稳定性和反应活性。我们希望这些规则将激发未来OER催化剂的原子设计策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f53/11467904/b06a3e15e98e/ja4c10312_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验