Suppr超能文献

高光谱成象通过人工智能辅助诊断结直肠息肉实现“切除并丢弃”策略:一项初步研究。

Hyperspectral imaging facilitating resect-and-discard strategy through artificial intelligence-assisted diagnosis of colorectal polyps: A pilot study.

机构信息

Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Department of Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China.

出版信息

Cancer Med. 2024 Sep;13(18):e70195. doi: 10.1002/cam4.70195.

Abstract

BACKGROUND AND AIMS

The resect-and-discard strategy for colorectal polyps based on accurate optical diagnosis remains challenges. Our aim was to investigate the feasibility of hyperspectral imaging (HSI) for identifying colorectal polyp properties and diagnosis of colorectal cancer in fresh tissues during colonoscopy.

METHODS

144,900 two dimensional images generated from 161 hyperspectral images of colorectal polyp tissues were prospectively obtained from patients undergoing colonoscopy. A residual neural network model was trained with transfer learning to automatically differentiate colorectal polyps, validated by histopathologic diagnosis. The diagnostic performances of the HSI-AI model and endoscopists were calculated respectively, and the auxiliary efficiency of the model was evaluated after a 2-week interval.

RESULTS

Quantitative HSI revealed histological differences in colorectal polyps. The HSI-AI model showed considerable efficacy in differentiating nonneoplastic polyps, non-advanced adenomas, and advanced neoplasia in vitro, with sensitivities of 96.0%, 94.0%, and 99.0% and specificities of 99.0%, 99.0%, and 96.5%, respectively. With the assistance of the model, the median negative predictive value of neoplastic polyps increased from 50.0% to 88.2% (p = 0.013) in novices.

CONCLUSION

This study demonstrated the feasibility of using HSI as a diagnostic tool to differentiate neoplastic colorectal polyps in vitro and the potential of AI-assisted diagnosis synchronized with colonoscopy. The tool may improve the diagnostic performance of novices and facilitate the application of resect-and-discard strategy to decrease the cost.

摘要

背景与目的

基于准确的光学诊断进行结直肠息肉的切除-丢弃策略仍然具有挑战性。我们的目的是研究在结肠镜检查期间使用高光谱成像(HSI)识别结直肠息肉特性和诊断结直肠癌的可行性。

方法

前瞻性地从接受结肠镜检查的患者中获得 161 张结直肠息肉组织的高光谱图像的 144900 张二维图像。使用迁移学习训练残差神经网络模型,通过组织病理学诊断进行验证。分别计算 HSI-AI 模型和内镜医师的诊断性能,并在间隔 2 周后评估模型的辅助效率。

结果

定量 HSI 揭示了结直肠息肉的组织学差异。HSI-AI 模型在体外鉴别非肿瘤性息肉、非高级别腺瘤和高级别肿瘤方面具有相当的效果,敏感性分别为 96.0%、94.0%和 99.0%,特异性分别为 99.0%、99.0%和 96.5%。在模型的辅助下,新手的肿瘤性息肉的中位阴性预测值从 50.0%增加到 88.2%(p=0.013)。

结论

本研究证明了 HSI 作为一种体外鉴别肿瘤性结直肠息肉的诊断工具的可行性,以及与结肠镜检查同步的 AI 辅助诊断的潜力。该工具可能会提高新手的诊断性能,并有助于实施切除-丢弃策略以降低成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64c8/11423483/ae9db677a7cb/CAM4-13-e70195-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验