Suppr超能文献

通过腔方法研究无向随机网络上中心性度量的分布

Distribution of centrality measures on undirected random networks via the cavity method.

作者信息

Bartolucci Silvia, Caccioli Fabio, Caravelli Francesco, Vivo Pierpaolo

机构信息

Department of Computer Science, University College London, London WC1E 6EA, United Kingdom.

Centre for Financial Technology, Imperial College Business School, South Kensington, London SW7 2AZ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2403682121. doi: 10.1073/pnas.2403682121. Epub 2024 Sep 25.

Abstract

The Katz centrality of a node in a complex network is a measure of the node's importance as far as the flow of information across the network is concerned. For ensembles of locally tree-like undirected random graphs, this observable is a random variable. Its full probability distribution is of interest but difficult to handle analytically because of its "global" character and its definition in terms of a matrix inverse. Leveraging a fast Gaussian Belief Propagation-Cavity algorithm to solve linear systems on tree-like structures, we show that i) the Katz centrality of a single instance can be computed recursively in a very fast way, and ii) the probability [Formula: see text] that a random node in the ensemble of undirected random graphs has centrality [Formula: see text] satisfies a set of recursive distributional equations, which can be analytically characterized and efficiently solved using a population dynamics algorithm. We test our solution on ensembles of Erdős-Rényi and Scale Free networks in the locally tree-like regime, with excellent agreement. The analytical distribution of centrality for the configuration model conditioned on the degree of each node can be employed as a benchmark to identify nodes of empirical networks with over- and underexpressed centrality relative to a null baseline. We also provide an approximate formula based on a rank-[Formula: see text] projection that works well if the network is not too sparse, and we argue that an extension of our method could be efficiently extended to tackle analytical distributions of other centrality measures such as PageRank for directed networks in a transparent and user-friendly way.

摘要

在复杂网络中,节点的卡茨中心性是衡量该节点在网络信息流动方面重要性的指标。对于局部树状无向随机图的集合,这个可观测值是一个随机变量。其完整的概率分布很受关注,但由于其“全局”特性以及通过矩阵求逆来定义,所以很难进行解析处理。利用一种快速高斯信念传播 - 腔算法来求解树状结构上的线性系统,我们表明:i)单个实例的卡茨中心性可以以非常快的方式递归计算;ii)无向随机图集合中随机节点具有中心性(x)的概率(P(x))满足一组递归分布方程,这些方程可以通过种群动力学算法进行解析表征并有效求解。我们在局部树状区域的厄多斯 - 雷尼网络和无标度网络集合上测试了我们的解决方案,结果吻合得很好。以每个节点的度数为条件的配置模型的中心性解析分布可以用作基准,以识别相对于零基线具有过高和过低中心性的实证网络节点。我们还提供了一个基于秩 - (1)投影的近似公式,当网络不太稀疏时效果很好,并且我们认为我们方法的扩展可以以一种透明且用户友好的方式有效地扩展到处理其他中心性度量(如有向网络的PageRank)的解析分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/979d/11459148/2cee95b283be/pnas.2403682121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验