Suppr超能文献

不同类型网络中心性测度的一致性和差异。

Consistency and differences between centrality measures across distinct classes of networks.

机构信息

The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.

School of Physics, The University of Sydney, Sydney, New South Wales, Australia.

出版信息

PLoS One. 2019 Jul 26;14(7):e0220061. doi: 10.1371/journal.pone.0220061. eCollection 2019.

Abstract

The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.

摘要

网络中不同节点的角色通常通过中心性分析来理解,该分析旨在通过节点的连接拓扑量化节点影响或被其他节点影响的能力。已经提出了许多不同的中心性度量,但它们提供独特信息的程度以及使用多个中心性度量来定义节点角色是否有利尚不清楚。在这里,我们计算了 212 个不同的真实网络中 17 个不同中心性度量之间的相关性,研究了这些相关性如何与网络密度和全局拓扑的变化相关,以及是否可以根据节点的中心性特征将节点聚类为不同的类别。我们发现中心性度量通常彼此正相关,这些相关性的强度在网络之间有所不同,网络模块性在驱动这些跨网络变化方面起着关键作用。基于中心性特征的数据驱动节点聚类可以区分不同的角色,包括高度中心节点的拓扑核心和较少中心节点的外围。我们的研究结果说明了网络拓扑如何塑造中心性度量之间相关性的模式,并展示了对网络中心性的比较方法如何为复杂网络中节点角色的解释提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e1/6660088/b0621039ef4f/pone.0220061.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验