Suppr超能文献

可视化不平等:实现公平学生成果的一步。

Visualizing Inequities: A Step Toward Equitable Student Outcomes.

机构信息

Department of Biology, University of Washington, Seattle, WA 98195.

出版信息

CBE Life Sci Educ. 2024 Dec;23(4):es9. doi: 10.1187/cbe.24-02-0086.

Abstract

The underrepresentation and underperformance of low-income, first-generation, gender minoritized, Black, Latine, and Indigenous students in Science, Technology, Engineering, and Mathematics (STEM) occurs for a variety of reasons, including, that students in these groups experience opportunity gaps in STEM classes. A critical approach to disrupting persistent inequities is implementing policies and practices that no longer systematically disadvantage students from minoritized groups. To do this, instructors must use data-informed reflection to interrogate their course outcomes. However, these data can be hard to access, process, and visualize in ways that make patterns of inequities clear. To address this need, we developed an R-Shiny application that allows authenticated users to visualize inequities in student performance. An explorable example can be found here: https://theobaldlab.shinyapps.io/visualizinginequities/. In this essay, we use publicly retrieved data as an illustrative example to detail 1) how individual instructors, groups of instructors, and institutions might use this tool for guided self-reflection and 2) how to adapt the code to accommodate data retrieved from local sources. All of the code is freely available here: https://github.com/TheobaldLab/VisualizingInequities. We hope faculty, administrators, and higher-education policymakers will make visible the opportunity gaps in college courses, with the explicit goal of creating transformative, equitable education through self-reflection, group discussion, and structured support.

摘要

低收入、第一代、性别少数群体、黑人和拉丁裔以及原住民学生在科学、技术、工程和数学(STEM)领域的代表性不足和表现不佳有多种原因,包括这些群体的学生在 STEM 课程中面临机会差距。打破持续存在的不平等现象的关键方法是实施不再系统地使少数群体学生处于不利地位的政策和做法。为此,教师必须使用数据驱动的反思来质疑他们的课程成果。然而,这些数据在以清晰显示不平等模式的方式进行访问、处理和可视化时可能会很困难。为了解决这个需求,我们开发了一个 R-Shiny 应用程序,允许经过身份验证的用户可视化学生成绩的不平等。可在此处找到可探索的示例:https://theobaldlab.shinyapps.io/visualizinginequities/。在本文中,我们使用公开检索到的数据作为说明性示例,详细介绍 1)个别教师、教师组和机构如何使用此工具进行有指导的自我反思,以及 2)如何改编代码以适应从本地源检索的数据。所有代码都可在此处免费获得:https://github.com/TheobaldLab/VisualizingInequities。我们希望教师、管理人员和高等教育政策制定者能够发现大学课程中的机会差距,明确目标是通过自我反思、小组讨论和结构化支持创造变革性、公平的教育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e77f/11659863/b0a458c7d4c7/cbe-23-es9-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验