Suppr超能文献

基于先验对抗生成网络的眼眶爆裂性骨折自动重建智能手术规划。

Intelligent surgical planning for automatic reconstruction of orbital blowout fracture using a prior adversarial generative network.

机构信息

Institute of Biomedical Manufacturing and Life Quality Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.

出版信息

Med Image Anal. 2025 Jan;99:103332. doi: 10.1016/j.media.2024.103332. Epub 2024 Sep 4.

Abstract

Orbital blowout fracture (OBF) is a disease that can result in herniation of orbital soft tissue, enophthalmos, and even severe visual dysfunction. Given the complex and diverse types of orbital wall fractures, reconstructing the orbital wall presents a significant challenge in OBF repair surgery. Accurate surgical planning is crucial in addressing this issue. However, there is currently a lack of efficient and precise surgical planning methods. Therefore, we propose an intelligent surgical planning method for automatic OBF reconstruction based on a prior adversarial generative network (GAN). Firstly, an automatic generation method of symmetric prior anatomical knowledge (SPAK) based on spatial transformation is proposed to guide the reconstruction of fractured orbital wall. Secondly, a reconstruction network based on SPAK-guided GAN is proposed to achieve accurate and automatic reconstruction of fractured orbital wall. Building upon this, a new surgical planning workflow based on the proposed reconstruction network and 3D Slicer software is developed to simplify the operational steps. Finally, the proposed surgical planning method is successfully applied in OBF repair surgery, verifying its reliability. Experimental results demonstrate that the proposed reconstruction network achieves relatively accurate automatic reconstruction of the orbital wall, with an average DSC of 92.35 ± 2.13% and a 95% Hausdorff distance of 0.59 ± 0.23 mm, markedly outperforming the compared state-of-the-art networks. Additionally, the proposed surgical planning workflow reduces the traditional planning time from an average of 25 min and 17.8 s to just 1 min and 35.1 s, greatly enhancing planning efficiency. In the future, the proposed surgical planning method will have good application prospects in OBF repair surgery.

摘要

眼眶爆裂性骨折(OBF)是一种可导致眶内软组织疝出、眼球内陷,甚至严重视觉功能障碍的疾病。鉴于眼眶壁骨折的复杂多样类型,在 OBF 修复手术中重建眼眶壁具有很大的挑战性。准确的手术规划在解决这个问题上至关重要。然而,目前缺乏高效和精确的手术规划方法。因此,我们提出了一种基于先验对抗生成网络(GAN)的自动 OBF 重建的智能手术规划方法。首先,提出了一种基于空间变换的对称先验解剖知识(SPAK)自动生成方法,以指导骨折眼眶壁的重建。其次,提出了一种基于 SPAK 引导 GAN 的重建网络,以实现骨折眼眶壁的精确自动重建。在此基础上,基于所提出的重建网络和 3D Slicer 软件,开发了一种新的手术规划工作流程,以简化操作步骤。最后,成功地将所提出的手术规划方法应用于 OBF 修复手术中,验证了其可靠性。实验结果表明,所提出的重建网络实现了眼眶壁的相对精确自动重建,平均 DSC 为 92.35±2.13%,95% Hausdorff 距离为 0.59±0.23mm,明显优于对比的最先进网络。此外,所提出的手术规划工作流程将传统规划时间从平均 25 分钟和 17.8 秒减少到仅 1 分钟和 35.1 秒,大大提高了规划效率。在未来,所提出的手术规划方法将在 OBF 修复手术中有很好的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验