Suppr超能文献

量子机器学习综述:从含噪声中等规模量子(NISQ)时代到容错时代

A comprehensive review of quantum machine learning: from NISQ to fault tolerance.

作者信息

Wang Yunfei, Liu Junyu

机构信息

Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD 20742, United States of America.

Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742, United States of America.

出版信息

Rep Prog Phys. 2024 Oct 15;87(11). doi: 10.1088/1361-6633/ad7f69.

Abstract

Quantum machine learning, which involves running machine learning algorithms on quantum devices, has garnered significant attention in both academic and business circles. In this paper, we offer a comprehensive and unbiased review of the various concepts that have emerged in the field of quantum machine learning. This includes techniques used in Noisy Intermediate-Scale Quantum (NISQ) technologies and approaches for algorithms compatible with fault-tolerant quantum computing hardware. Our review covers fundamental concepts, algorithms, and the statistical learning theory pertinent to quantum machine learning.

摘要

量子机器学习,即涉及在量子设备上运行机器学习算法,已在学术界和商界引起了广泛关注。在本文中,我们对量子机器学习领域中出现的各种概念进行了全面且客观的综述。这包括噪声中等规模量子(NISQ)技术中使用的技术以及与容错量子计算硬件兼容的算法方法。我们的综述涵盖了与量子机器学习相关的基本概念、算法和统计学习理论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验