Suppr超能文献

研究用于5D心脏光子计数微CT图像快速去噪的深度学习策略。

Investigating deep learning strategies for fast denoising of 5D cardiac photon-counting micro-CT images.

作者信息

Nadkarni Rohan, Clark Darin P, Allphin Alex Jeffrey, Badea Cristian T

机构信息

Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA, Durham, North Carolina, 27710-1000, UNITED STATES.

Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Box 3302, Durham, North Carolina, 27710-1000, UNITED STATES.

出版信息

Phys Med Biol. 2024 Sep 25. doi: 10.1088/1361-6560/ad7fc6.

Abstract

Photon-counting detectors (PCDs) for CT imaging use energy thresholds to simultaneously acquire projections at multiple energies, making them suitable for spectral imaging and material decomposition. Unfortunately, setting multiple energy thresholds results in noisy analytical reconstructions due to low photon counts in high-energy bins. Iterative reconstruction provides high quality photon-counting CT (PCCT) images but requires enormous computation time for 5D (3D + energy + time) in vivo cardiac imaging. Approach. We recently introduced UnetU, a deep learning (DL) approach that accurately denoises axial slices from 4D (3D + energy) PCCT reconstructions at various acquisition settings. In this study, we explore UnetU configurations for 5D cardiac PCCT denoising, focusing on singular value decomposition (SVD) modifications along the energy and time dimensions and alternate network architectures such as 3D U-net, FastDVDNet, and Swin Transformer UNet. We compare our networks to multi-energy non-local means (ME NLM), an established PCCT denoising algorithm. Main results. Our evaluation, using real mouse data and the digital MOBY phantom, revealed that all DL methods were more than 16 times faster than iterative reconstruction. DL denoising with SVD along the energy dimension was most effective, consistently providing low root mean square error and spatio-temporal reduced reference entropic difference, alongside strong qualitative agreement with iterative reconstruction. This superiority was attributed to lower effective rank along the energy dimension than the time dimension in 5D cardiac PCCT reconstructions. ME NLM sometimes outperformed DL with time SVD or time and energy SVD, but lagged behind iterative reconstruction and DL with energy SVD. Among alternate DL architectures with energy SVD, none consistently outperformed UnetU Energy (2D). Significance. Our study establishes UnetU Energy as an accurate and efficient method for 5D cardiac PCCT denoising, offering a 32-fold speed increase from iterative reconstruction. This advancement sets a new benchmark for DL applications in cardiovascular imaging.

摘要

用于CT成像的光子计数探测器(PCD)利用能量阈值同时获取多个能量下的投影,使其适用于光谱成像和物质分解。不幸的是,设置多个能量阈值会由于高能区间光子计数较低而导致解析重建出现噪声。迭代重建可提供高质量的光子计数CT(PCCT)图像,但对于体内心脏5D(3D + 能量 + 时间)成像需要巨大的计算时间。

方法。

我们最近引入了UnetU,这是一种深度学习(DL)方法,可在各种采集设置下对4D(3D + 能量)PCCT重建的轴向切片进行准确去噪。在本研究中,我们探索用于5D心脏PCCT去噪的UnetU配置,重点关注沿能量和时间维度的奇异值分解(SVD)修改以及替代网络架构,如3D U-net、FastDVDNet和Swin Transformer UNet。我们将我们的网络与多能量非局部均值(ME NLM)进行比较,ME NLM是一种成熟的PCCT去噪算法。

主要结果。

我们使用真实小鼠数据和数字MOBY体模进行的评估表明,所有DL方法都比迭代重建快16倍以上。沿能量维度进行SVD的DL去噪最为有效,始终提供低均方根误差和时空降低的参考熵差,同时与迭代重建在定性上有很强的一致性。这种优势归因于在5D心脏PCCT重建中沿能量维度的有效秩低于时间维度。ME NLM有时在时间SVD或时间和能量SVD方面优于DL,但落后于迭代重建和能量SVD的DL。在具有能量SVD的替代DL架构中,没有一个始终优于UnetU Energy(2D)。

意义。

我们的研究确立了UnetU Energy作为5D心脏PCCT去噪的准确有效方法,并比迭代重建快32倍。这一进展为心血管成像中的DL应用树立了新的标杆。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验