Lefebvre Thierry L, Sweeney Paul W, Grohl Janek, Hacker Lina, Brown Emma L, Else Thomas R, Oraiopoulou Mariam-Eleni, Bloom Algernon, Lewis David Y, Bohndiek Sarah E
Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Department of Physics, University of Cambridge Department of Physics, JJ Thomson Avenue, Cambridge, Cambridge, CB3 0HE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Phys Med Biol. 2024 Sep 25;69(21). doi: 10.1088/1361-6560/ad7fc7.
The formation of functional vasculature in solid tumours enables delivery of oxygen and nutrients, and is vital for effective treatment with chemotherapeutic agents. Longitudinal characterisation of vascular networks can be enabled using mesoscopic photoacoustic imaging, but requires accurate image co-registration to precisely assess local changes across disease development or in response to therapy. Co-registration in photoacoustic imaging is challenging due to the complex nature of the generated signal, including the sparsity of data, artefacts related to the illumination/detection geometry, scan-to-scan technical variability, and biological variability, such as transient changes in perfusion. To better inform the choice of co-registration algorithms, we compared five open-source methods, in physiological and pathological tissues, with the aim of aligning evolving vascular networks in tumours imaged over growth at different time-points.Co-registration techniques were applied to 3D vascular images acquired with photoacoustic mesoscopy from murine ears and breast cancer patient-derived xenografts, at a fixed time-point and longitudinally. Images were pre-processed and segmented using an unsupervised generative adversarial network. To compare co-registration quality in different settings, pairs of fixed and moving intensity images and/or segmentations were fed into five methods split into the following categories: affine intensity-based using 1)mutual information (MI) or 2)normalised cross-correlation (NCC) as optimisation metrics, affine shape-based using 3)NCC applied to distance-transformed segmentations or 4)iterative closest point algorithm, and deformable weakly supervised deep learning-based using 5)LocalNet co-registration. Percent-changes in Dice coefficients, surface distances, MI, structural similarity index measure and target registration errors were evaluated.Co-registration using MI or NCC provided similar alignment performance, better than shape-based methods. LocalNet provided accurate co-registration of substructures by optimising subfield deformation throughout the volumes, outperforming other methods, especially in the longitudinal breast cancer xenograft dataset by minimising target registration errors.We showed the feasibility of co-registering repeatedly or longitudinally imaged vascular networks in photoacoustic mesoscopy, taking a step towards longitudinal quantitative characterisation of these complex structures. These tools open new outlooks for monitoring tumour angiogenesis at the meso-scale and for quantifying treatment-induced co-localised alterations in the vasculature.
实体瘤中功能性脉管系统的形成有助于氧气和营养物质的输送,对于化疗药物的有效治疗至关重要。使用介观光声成像可以对血管网络进行纵向表征,但需要精确的图像配准才能准确评估疾病发展过程中或对治疗反应时的局部变化。由于所产生信号的复杂性,光声成像中的配准具有挑战性,这些复杂性包括数据的稀疏性、与照明/检测几何形状相关的伪影、逐次扫描的技术变异性以及生物变异性,如灌注的瞬时变化。为了更好地指导配准算法的选择,我们在生理和病理组织中比较了五种开源方法,目的是在不同时间点对肿瘤生长过程中成像的不断演变的血管网络进行对齐。配准技术应用于通过光声显微镜从鼠耳和乳腺癌患者来源的异种移植瘤获取的三维血管图像,在固定时间点和纵向进行。使用无监督生成对抗网络对图像进行预处理和分割。为了比较不同设置下的配准质量,将固定和移动强度图像对和/或分割结果输入到分为以下几类的五种方法中:基于仿射强度的方法,使用1)互信息(MI)或2)归一化互相关(NCC)作为优化指标;基于仿射形状的方法,使用3)应用于距离变换分割的NCC或4)迭代最近点算法;以及基于变形弱监督深度学习的方法,使用5)LocalNet配准。评估了骰子系数、表面距离、MI、结构相似性指数测量和目标配准误差的百分比变化。使用MI或NCC进行配准提供了相似的对齐性能,优于基于形状的方法。LocalNet通过优化整个体积中的子场变形,提供了子结构的精确配准,优于其他方法,特别是在纵向乳腺癌异种移植数据集上,通过最小化目标配准误差。我们展示了在光声显微镜中对重复或纵向成像的血管网络进行配准的可行性,朝着对这些复杂结构进行纵向定量表征迈出了一步。这些工具为在介观尺度上监测肿瘤血管生成以及量化治疗引起的血管共定位改变开辟了新的前景。