Suppr超能文献

深度神经网络在间充质干细胞治疗剂制造过程中的应用。

Application of Deep Neural Networks in the Manufacturing Process of Mesenchymal Stem Cells Therapeutics.

作者信息

Ngo Dat, Lee Jeongmin, Kwon Sun Jae, Park Jin Hun, Cho Baek Hwan, Chang Jong Wook

机构信息

Department of Computer Engineering, Korea National University of Transportation, Chungju, Korea.

CDMO Technology Institute, ENCell Co., Ltd., Seoul, Korea.

出版信息

Int J Stem Cells. 2025 May 30;18(2):186-193. doi: 10.15283/ijsc24070. Epub 2024 Sep 26.

Abstract

Current image-based analysis methods for monitoring cell confluency and status depend on individual interpretations, which can lead to wide variations in the quality of cell therapeutics. To overcome these limitations, images of mesenchymal stem cells cultured adherently in various types of culture vessels were captured and analyzed using a deep neural network. Among the various deep learning methods, a classification and detection algorithm was selected to verify cell confluency and status. We confirmed that the image classification algorithm demonstrates significant accuracy for both single- and multistack images. Abnormal cells could be detected exclusively in single-stack images, as multistack culture was performed only when abnormal cells were absent in the single-stack culture. This study is the first to analyze cell images based on a deep learning method that directly impacts yield and quality, which are important product parameters in stem cell therapeutics.

摘要

当前用于监测细胞汇合度和状态的基于图像的分析方法依赖于个人解读,这可能导致细胞治疗质量的广泛差异。为克服这些局限性,使用深度神经网络对在各种类型培养容器中贴壁培养的间充质干细胞图像进行了采集和分析。在各种深度学习方法中,选择了一种分类和检测算法来验证细胞汇合度和状态。我们证实,图像分类算法对单堆栈和多堆栈图像均显示出显著的准确性。异常细胞仅能在单堆栈图像中被检测到,因为仅在单堆栈培养中不存在异常细胞时才进行多堆栈培养。本研究首次基于深度学习方法分析细胞图像,该方法直接影响产量和质量,而产量和质量是干细胞治疗中的重要产品参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1b6/12122248/2b8144aa73dd/ijsc-18-2-186-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验