Suppr超能文献

基于物联网的深度学习进行 CT 图像的在线诊断和分类。

Online Diagnosis and Classification of CT Images Collected by Internet of Things Using Deep Learning.

机构信息

College of Big Data, Qingdao Huanghai University, Qingdao, Shandong 266427, China.

出版信息

Comput Math Methods Med. 2022 Mar 19;2022:5373624. doi: 10.1155/2022/5373624. eCollection 2022.

Abstract

Deep learning technology has recently played an important role in image, language processing, and feature extraction. In the past disease diagnosis, most medical staff fixed the images together for observation and then combined with their own work experience to judge. The diagnosis results are subjective, time-consuming, and inefficient. In order to improve the efficiency of diagnosis, this paper applies the deep learning algorithm to the online diagnosis and classification of CT images. Based on this, in this paper, the deep learning algorithm is applied to CT image online diagnosis and classification. Based on a brief analysis of the current situation of CT image classification, this paper proposes to use the Internet of things technology to collect CT image information and establishes the Internet of things to collect the CT image model. In view of image classification and diagnosis, the convolution neural network algorithm in the deep learning algorithm is proposed to diagnose and classify CT images, and several factors affecting the accuracy of classification are proposed, including the convolution number and network layer number. Using the CT image of the hospital brain for simulation analysis, the simulation results confirm the effectiveness of the deep learning algorithm. With the increase of convolution and network layer and the decrease of compensation, the accuracy of image classification will decline. Using the maximum pool method, reducing the step size can improve the classification effect. Using relu function as the activation function can improve the classification accuracy. In the process of large data set processing, appropriately adding a network layer can improve classification accuracy. In the diagnosis and analysis of brain CT images, the overall classification accuracy is close to 70%, and in the diagnosis of tumor diseases, the accuracy is higher, up to 80%.

摘要

深度学习技术在图像、语言处理和特征提取方面最近发挥了重要作用。过去在疾病诊断中,大多数医务人员将图像固定在一起进行观察,然后结合自己的工作经验进行判断。诊断结果主观、耗时且效率低下。为了提高诊断效率,本文将深度学习算法应用于 CT 图像的在线诊断和分类。在此基础上,本文将深度学习算法应用于 CT 图像的在线诊断和分类。在简要分析 CT 图像分类现状的基础上,提出利用物联网技术采集 CT 图像信息,建立物联网采集 CT 图像模型。针对图像分类和诊断,提出在深度学习算法中使用卷积神经网络算法对 CT 图像进行诊断和分类,并提出了影响分类精度的几个因素,包括卷积数量和网络层数。利用医院脑部 CT 图像进行模拟分析,模拟结果证实了深度学习算法的有效性。随着卷积和网络层数的增加和补偿的减少,图像分类的准确性会下降。使用最大池化方法,减小步长可以提高分类效果。使用 relu 函数作为激活函数可以提高分类精度。在处理大数据集的过程中,适当增加网络层可以提高分类精度。在脑 CT 图像的诊断和分析中,整体分类准确率接近 70%,在肿瘤疾病的诊断中准确率更高,达到 80%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78c8/8957435/3458965de62b/CMMM2022-5373624.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验