Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P.R. China.
Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54389-54400. doi: 10.1021/acsami.4c09208. Epub 2024 Sep 25.
Nanozymes have been developed to overcome the inherent limitations of natural enzymes, such as their low stability and high cost. However, their efficacy has been hindered by their relatively low specificity and activity. Here, we demonstrate the self-assembly of individual copper nanoclusters (CuNCs) via a simple yet fast (10 min) DNA nanosheet (DNS)-templated method, enhancing the peroxidase-like activity and specificity of CuNCs. Furthermore, we demonstrate the successful assembly of CuNCs on different DNA nanostructures by atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The resulting micron-scale ultrathin DNA nanosheet-templated CuNCs (DNS@CuNCs) exhibit exceptional catalytic activity, with a specific activity reaching 1.79 × 10 U mg. Investigation into the catalytic process reveals that the enhanced activity and specificity arise from disparities in active intermediate content before and after CuNCs assembly. Significantly, the DNS@CuNCs-based biosensor demonstrates remarkable anti-interference capabilities, enabling the detection of HO in undiluted human serum for the first time with a detection limit of 0.99 μM.
纳米酶已被开发出来以克服天然酶固有的局限性,例如稳定性低和成本高。然而,它们的功效受到相对较低的特异性和活性的限制。在这里,我们通过一种简单而快速(10 分钟)的 DNA 纳米片(DNS)模板方法证明了单个铜纳米团簇(CuNCs)的自组装,增强了 CuNCs 的过氧化物酶样活性和特异性。此外,我们通过原子力显微镜(AFM)、透射电子显微镜(TEM)和 X 射线光电子能谱(XPS)证明了 CuNCs 在不同 DNA 纳米结构上的成功组装。所得的微米级超薄 DNA 纳米片模板化 CuNCs(DNS@CuNCs)表现出优异的催化活性,比活性达到 1.79×10 U mg。对催化过程的研究表明,增强的活性和特异性源于 CuNCs 组装前后活性中间体含量的差异。重要的是,基于 DNS@CuNCs 的生物传感器表现出出色的抗干扰能力,首次能够在未稀释的人血清中检测到 HO,检测限为 0.99 μM。