Suppr超能文献

AESurv:用于准确预测冠心病的自动编码器生存分析。

AESurv: autoencoder survival analysis for accurate early prediction of coronary heart disease.

机构信息

Department of Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates Street, Arlington, TX, 76019, USA.

Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 West 168th Street, New York, NY, 10032, USA.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae479.

Abstract

Coronary heart disease (CHD) is one of the leading causes of mortality and morbidity in the United States. Accurate time-to-event CHD prediction models with high-dimensional DNA methylation and clinical features may assist with early prediction and intervention strategies. We developed a state-of-the-art deep learning autoencoder survival analysis model (AESurv) to effectively analyze high-dimensional blood DNA methylation features and traditional clinical risk factors by learning low-dimensional representation of participants for time-to-event CHD prediction. We demonstrated the utility of our model in two cohort studies: the Strong Heart Study cohort (SHS), a prospective cohort studying cardiovascular disease and its risk factors among American Indians adults; the Women's Health Initiative (WHI), a prospective cohort study including randomized clinical trials and observational study to improve postmenopausal women's health with one of the main focuses on cardiovascular disease. Our AESurv model effectively learned participant representations in low-dimensional latent space and achieved better model performance (concordance index-C index of 0.864 ± 0.009 and time-to-event mean area under the receiver operating characteristic curve-AUROC of 0.905 ± 0.009) than other survival analysis models (Cox proportional hazard, Cox proportional hazard deep neural network survival analysis, random survival forest, and gradient boosting survival analysis models) in the SHS. We further validated the AESurv model in WHI and also achieved the best model performance. The AESurv model can be used for accurate CHD prediction and assist health care professionals and patients to perform early intervention strategies. We suggest using AESurv model for future time-to-event CHD prediction based on DNA methylation features.

摘要

冠心病(CHD)是美国主要的死亡和发病原因之一。具有高维 DNA 甲基化和临床特征的准确时间事件 CHD 预测模型可以帮助进行早期预测和干预策略。我们开发了一种最先进的深度学习自动编码器生存分析模型(AESurv),通过学习参与者的低维表示来有效分析高维血液 DNA 甲基化特征和传统临床危险因素,从而进行时间事件 CHD 预测。我们在两项队列研究中证明了我们模型的实用性:Strong Heart 研究队列(SHS),一项前瞻性研究,研究美国印第安成年人的心血管疾病及其危险因素;妇女健康倡议(WHI),一项前瞻性队列研究,包括随机临床试验和观察性研究,旨在改善绝经后妇女的健康,主要关注心血管疾病之一。我们的 AESurv 模型有效地在低维潜在空间中学习参与者的表示,并且比其他生存分析模型(Cox 比例风险、Cox 比例风险深度神经网络生存分析、随机生存森林和梯度提升生存分析模型)实现了更好的模型性能(一致性指数-C 指数为 0.864±0.009,时间事件接受者操作特征曲线-AUROC 为 0.905±0.009),在 SHS 中。我们进一步在 WHI 中验证了 AESurv 模型,并取得了最佳的模型性能。AESurv 模型可用于准确预测 CHD,并帮助医疗保健专业人员和患者进行早期干预策略。我们建议基于 DNA 甲基化特征使用 AESurv 模型进行未来的时间事件 CHD 预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/11424508/535b23d75227/bbae479f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验