Suppr超能文献

揭示锂离子电池高镍层状氧化物阴极中滑动诱导的结构畸变

Revealing Gliding-Induced Structural Distortion in High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries.

作者信息

Yu Dongyan, Zeng Guifan, Chen Diancheng, Yan Yawen, Zou Yue, Liu Qirui, Zhang Kang, Fang Kai, Xu Juping, Yin Wen, Hong Yu-Hao, Qiu Tian, Liao Hong-Gang, Kuai Xiaoxiao, Sun Yang, Qiao Yu, Sun Shi-Gang

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.

School of MaterialsSun Yat-sen University, Shenzhen 518107, China.

出版信息

ACS Nano. 2024 Oct 8;18(40):27654-27664. doi: 10.1021/acsnano.4c09354. Epub 2024 Sep 25.

Abstract

After charging to a high state-of-charge (SoC), layered oxide cathodes exhibit high capacities but suffer from gliding-induced structural distortions caused by deep Li depletion within alkali metal (AM) layers, especially for high-nickel candidates. In this study, we identify the essential structure of the detrimental H3 phase formed at high SoC to be an intergrowth structure characterized by random sequences of the O3 and O1 slabs, where the O3 slabs represent Li-rich layers and the O1 slabs denote Li-depleted (or empty) layers that glide from the O3 slabs. Moreover, we adopt two doping strategies targeting different doping sites to eliminate the formation of Li-vacant O1 slabs. First, we introduce direct transition metal (TM) pillars between TMO slabs achieved through dopants (e.g., Nb) positioned within AM layers, significantly improving the cycling stability. Second, we introduce indirect Li pillars achieved through dopants located at TM layers to adjust the Li-O bond strength. While this strategy can regulate the uniformity of Li at the slab level, it results in an uneven Li distribution at the particle scale, ultimately failing to enhance the electrochemical performance. Our established research strategy facilitates the realization of diverse pillars between TMO slabs through doping, thereby offering guidance for stabilizing high-capacity layered oxide cathodes at high SoC.

摘要

在充电至高充电状态(SoC)后,层状氧化物阴极表现出高容量,但会因碱金属(AM)层内深度锂耗尽导致的滑移诱导结构畸变而受损,特别是对于高镍材料而言。在本研究中,我们确定了在高SoC下形成的有害H3相的基本结构为一种共生结构,其特征是O3和O1板层的随机序列,其中O3板层代表富锂层,O1板层表示从O3板层滑移而来的贫锂(或空)层。此外,我们采用了两种针对不同掺杂位点的掺杂策略来消除锂空位O1板层的形成。首先,我们通过位于AM层内的掺杂剂(如Nb)在TMO板层之间引入直接过渡金属(TM)柱,显著提高了循环稳定性。其次,我们通过位于TM层的掺杂剂引入间接锂柱来调节Li-O键强度。虽然这种策略可以在板层水平上调节锂的均匀性,但它会导致在颗粒尺度上锂分布不均匀,最终无法提高电化学性能。我们建立的研究策略有助于通过掺杂实现TMO板层之间的多种柱结构,从而为在高SoC下稳定高容量层状氧化物阴极提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验