Wang Fenglei, Slowik Adam
Xinxiang University, Xinxiang, 453003, China.
Koszalin University of Technology, Koszalin, Poland.
Heliyon. 2024 Sep 12;10(18):e37633. doi: 10.1016/j.heliyon.2024.e37633. eCollection 2024 Sep 30.
-In the digital music era, accurate and trustworthy track recommendations for musical dance electronic products are becoming increasingly important to improve user experiences and attract more consumers. Consumer behavior modeling is critical in user interest learning and has been extensively used in recommender systems to improve recommendation accuracy. This paper proposes a novel AI-empowered consumer behavior analysis method for trustworthy track recommendations over musical dance electronic products. Specifically, we first model consumer behavior by integrating collaborative filtering and a hidden Markov model to capture the key interactive patterns between consumers and musical dance electronic products. Then, we develop a trustworthy track recommendation method based on multi-layer attention representation learning, which leverages scattering transform for audio preprocessing and attention-based independent recurrent neural networks for encoding user preferences and product features. Extensive experiments on real-world datasets demonstrate the superiority of our proposed method in terms of recommendation accuracy and trustworthiness.
在数字音乐时代,为音乐舞蹈电子产品提供准确且值得信赖的曲目推荐对于提升用户体验和吸引更多消费者变得越来越重要。消费者行为建模在了解用户兴趣方面至关重要,并且已在推荐系统中广泛应用以提高推荐准确性。本文提出了一种新颖的人工智能赋能的消费者行为分析方法,用于为音乐舞蹈电子产品提供值得信赖的曲目推荐。具体而言,我们首先通过整合协同过滤和隐马尔可夫模型对消费者行为进行建模,以捕捉消费者与音乐舞蹈电子产品之间的关键交互模式。然后,我们基于多层注意力表示学习开发了一种值得信赖的曲目推荐方法,该方法利用散射变换进行音频预处理,并使用基于注意力的独立循环神经网络对用户偏好和产品特征进行编码。在真实世界数据集上进行的大量实验证明了我们所提出方法在推荐准确性和可信度方面的优越性。