Suppr超能文献

基于超图嵌入的音乐推荐

Music Recommendation via Hypergraph Embedding.

作者信息

Gatta Valerio La, Moscato Vincenzo, Pennone Mirko, Postiglione Marco, Sperli Giancarlo

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):7887-7899. doi: 10.1109/TNNLS.2022.3146968. Epub 2023 Oct 6.

Abstract

In recent years, we have witnessed an ever wider spread of multimedia streaming platforms (e.g., Netflix, Spotify, and Amazon). Hence, it has become more and more essential to provide such systems with advanced recommendation facilities, in order to support users in browsing these massive collections of multimedia data according to their preferences and needs. In this context, the modeling of entities and their complex relationships (e.g., users listening to topic-based songs or authors creating different releases of their lyrics) represents the key challenge to improve the recommendation and maximize the users' satisfaction. To this end, this is the first study to leverage the high representative power of hypergraph data structures in combination with modern graph machine learning techniques in the context of music recommendation. Specifically, we propose hypergraph embeddings for music recommendation (HEMR), a novel framework for song recommendation based on hypergraph embedding. The hypergraph data model allows us to represent seamlessly all the possible and complex interactions between users and songs with the related characteristics; meanwhile, embedding techniques provide a powerful way to infer the user-song similarities by vector mapping. We have experimented the effectiveness and efficiency of our approach with respect to the state-of-the-art most recent music recommender systems, exploiting the Million Song dataset. The results show that HEMR significantly outperforms other state-of-the-art techniques, especially in scenarios where the cold-start problem arises, thus making our system a suitable solution to embed within a music streaming platform.

摘要

近年来,我们目睹了多媒体流平台(如Netflix、Spotify和亚马逊)的传播范围越来越广。因此,为这些系统提供先进的推荐功能变得越来越重要,以便根据用户的偏好和需求支持他们浏览这些海量的多媒体数据集合。在这种背景下,实体及其复杂关系的建模(例如,用户收听基于主题的歌曲或作者创作不同版本的歌词)是改善推荐并最大化用户满意度的关键挑战。为此, 这是第一项在音乐推荐背景下结合现代图机器学习技术利用超图数据结构的高代表性的研究。具体而言,我们提出了用于音乐推荐的超图嵌入(HEMR),这是一种基于超图嵌入的歌曲推荐新框架。超图数据模型使我们能够无缝地表示用户与歌曲之间所有可能的复杂交互及其相关特征;同时,嵌入技术提供了一种通过向量映射推断用户与歌曲相似度的有效方法。我们利用百万歌曲数据集,针对最新的最先进音乐推荐系统对我们方法的有效性和效率进行了实验。结果表明,HEMR明显优于其他最先进的技术,尤其是在出现冷启动问题的场景中,从而使我们的系统成为适合嵌入音乐流平台的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验