Sastre Juan, Pérez Salvador, Sabater Luis, Rius-Pérez Sergio
Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain.
Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain.
Physiol Rev. 2025 Apr 1;105(2):593-650. doi: 10.1152/physrev.00044.2023. Epub 2024 Sep 26.
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
本综述探讨了在健康生理条件下以及急性胰腺炎、慢性胰腺炎、胰腺癌和糖尿病状态下胰腺中的氧化应激和氧化还原信号传导。生理氧化还原稳态主要由NRF2/KEAP1、NF-κB、蛋白酪氨酸磷酸酶、过氧化物酶体增殖物激活受体γ共激活因子1α(PGC1α)和正常自噬维持。胰腺中还原型谷胱甘肽(GSH)的耗竭是急性胰腺炎的一个标志,最初伴有二硫键应激,其特征是蛋白质半胱氨酸化而谷胱甘肽氧化未增加。氧化应激、丝裂原活化蛋白激酶(MAPKs)和NF-κB之间的相互作用放大了炎症级联反应,其中蛋白磷酸酶2A(PP2A)和PGC1α是关键的氧化还原调节节点。在急性胰腺炎中,胱硫醚-β合酶的硝化导致转硫途径受阻,导致同型半胱氨酸水平升高,而p53通过下调硫氧还蛋白、PGC1α和过氧化物氧还蛋白3触发胰腺坏死性凋亡。慢性胰腺炎表现为由NADPH氧化酶1和/或细胞色素P450 2E1(CYP2E1)介导的氧化应激,促进细胞死亡、纤维化和炎症。氧化应激与突变型KRAS协同作用引发并促进胰腺腺癌。突变型KRAS增加线粒体活性氧(ROS),触发腺泡细胞向导管细胞化生并进展为胰腺上皮内瘤变(PanIN)。ROS维持在足以促进细胞增殖的水平,同时通过形成NADPH和GSH以及激活NRF2、低氧诱导因子1/2α(HIF-1/2α)和环磷腺苷效应元件结合蛋白(CREB)避免细胞死亡或衰老。氧化还原信号传导在β细胞的分化、增殖和胰岛素分泌中也起着重要作用。然而,ROS的过度产生促进1型和2型糖尿病中β细胞功能障碍和凋亡。