Suppr超能文献

通过生物信息学分析对2型糖尿病相关肝纤维化发病机制的研究

Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis.

作者信息

Xiong Zhiyu, Shu Kan, Jiang Yingan

机构信息

Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

Biomedicines. 2025 Apr 1;13(4):840. doi: 10.3390/biomedicines13040840.

Abstract

The global prevalence of type 2 diabetes mellitus (T2DM) with liver fibrosis is rising, with T2DM identified as an independent risk factor and key prognostic factor for liver fibrosis. However, the underlying mechanisms remain unclear. To explore the shared pathogenesis of liver fibrosis and T2DM, we analyzed gene expression profiles from the GEO database. The co-differentially expressed genes (co-DEGs) were identified and subsequently analyzed through functional enrichment, protein-protein interaction (PPI) network construction, transcription factor prediction, and drug prediction. Machine learning algorithms were then applied to identify key genes. A total of 175 co-DEGs were identified. Functional enrichment analysis indicated their involvement in extracellular matrix (ECM) remodeling, inflammation, and the PI3K/Akt signaling pathway. Through PPI network analysis and four algorithms, eight hub genes were identified, including , , , , , , , and , with being recognized as a key gene by machine learning. The upregulation of was observed in both diseases, and it is closely related to the progression of liver fibrosis and T2DM. Transcription factor analysis detected 29 regulators of these hub genes. Drug prediction analysis suggested that retinoic acid may serve as a potential therapeutic agent. : This study provides novel insights into the shared pathogenesis of liver fibrosis and T2DM and offer potential targets for clinical intervention.

摘要

全球2型糖尿病(T2DM)合并肝纤维化的患病率正在上升,T2DM被确定为肝纤维化的独立危险因素和关键预后因素。然而,其潜在机制仍不清楚。为了探究肝纤维化和T2DM的共同发病机制,我们分析了来自基因表达综合数据库(GEO数据库)的基因表达谱。鉴定出共差异表达基因(co-DEGs),随后通过功能富集、蛋白质-蛋白质相互作用(PPI)网络构建、转录因子预测和药物预测进行分析。然后应用机器学习算法来识别关键基因。总共鉴定出175个共差异表达基因。功能富集分析表明它们参与细胞外基质(ECM)重塑、炎症和PI3K/Akt信号通路。通过PPI网络分析和四种算法,鉴定出八个枢纽基因,包括[具体基因名称1]、[具体基因名称2]、[具体基因名称3]、[具体基因名称4]、[具体基因名称5]、[具体基因名称6]、[具体基因名称7]和[具体基因名称8],其中[关键基因名称]被机器学习识别为关键基因。在两种疾病中均观察到[关键基因名称]的上调,并且它与肝纤维化和T2DM的进展密切相关。转录因子分析检测到这些枢纽基因的29个调节因子。药物预测分析表明视黄酸可能是一种潜在的治疗药物。结论:本研究为肝纤维化和T2DM的共同发病机制提供了新的见解,并为临床干预提供了潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6cc/12024958/e153461291be/biomedicines-13-00840-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验