Shankar Sneha, Chen Yuzhang, Averbeck Spencer, Hendricks Quincy, Murphy Brendan, Ferleger Benjamin, Driscoll Nicolette, Shekhirev Mikhail, Takano Hajime, Richardson Andrew, Gogotsi Yury, Vitale Flavia
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Adv Healthc Mater. 2025 Feb;14(4):e2402576. doi: 10.1002/adhm.202402576. Epub 2024 Sep 27.
Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact-resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically-induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi-unit activity across cortical depths, showing the feasibility of recording high-frequency electrophysiological activity. The transparency and optical absorption properties of Ti₃C₂Tx MXene microelectrodes enable high-quality recordings and simultaneous light-based stimulation and imaging without contamination from light-induced artifacts.
透明微电极阵列已被证明在神经传感中很有用,它提供了一个清晰的界面,可用于监测大脑活动,同时不影响高空间和时间分辨率。当前透明电极技术面临的挑战在于,要开发出耐用、高透明度的电极,同时保持低界面阻抗,并优先考虑可扩展的加工和制造方法。为了解决这些限制,我们引入了抗伪迹的透明MXene微电极阵列,该阵列针对神经活动的高时空分辨率记录进行了优化。这些阵列在550nm处具有60%的透过率,能够实现用于多模态神经图谱的同步成像和电生理学。电化学表征显示,在1kHz时阻抗低至563±99kΩ,在无化学掺杂的情况下电荷存储容量为58mC cm⁻²。在啮齿动物模型中的体内实验证明了透明阵列的功能和性能。在化学诱导的癫痫样活动的啮齿动物模型中,我们通过钙成像追踪发作波前,同时记录癫痫发作的起始。在大鼠桶状皮层中,我们记录了整个皮层深度的多单元活动,显示了记录高频电生理活动的可行性。Ti₃C₂Tx MXene微电极的透明度和光吸收特性能够实现高质量记录以及同时进行基于光的刺激和成像,而不会受到光诱导伪迹的污染。