Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.
Center for Life Science, Boston Children's Hospital, Boston, MA 02115, USA.
Sci Adv. 2018 Sep 5;4(9):eaat0626. doi: 10.1126/sciadv.aat0626. eCollection 2018 Sep.
Transparent microelectrode arrays have emerged as increasingly important tools for neuroscience by allowing simultaneous coupling of big and time-resolved electrophysiology data with optically measured, spatially and type resolved single neuron activity. Scaling down transparent electrodes to the length scale of a single neuron is challenging since conventional transparent conductors are limited by their capacitive electrode/electrolyte interface. In this study, we establish transparent microelectrode arrays with high performance, great biocompatibility, and comprehensive in vivo validations from a recently developed, bilayer-nanomesh material composite, where a metal layer and a low-impedance faradaic interfacial layer are stacked reliably together in a same transparent nanomesh pattern. Specifically, flexible arrays from 32 bilayer-nanomesh microelectrodes demonstrated near-unity yield with high uniformity, excellent biocompatibility, and great compatibility with state-of-the-art wireless recording and real-time artifact rejection system. The electrodes are highly scalable, with 130 kilohms at 1 kHz at 20 μm in diameter, comparable to the performance of microelectrodes in nontransparent Michigan arrays. The highly transparent, bilayer-nanomesh microelectrode arrays allowed in vivo two-photon imaging of single neurons in layer 2/3 of the visual cortex of awake mice, along with high-fidelity, simultaneous electrical recordings of visual-evoked activity, both in the multi-unit activity band and at lower frequencies by measuring the visual-evoked potential in the time domain. Together, these advances reveal the great potential of transparent arrays from bilayer-nanomesh microelectrodes for a broad range of utility in neuroscience and medical practices.
透明微电极阵列已经成为神经科学中越来越重要的工具,它允许同时结合大时间分辨的电生理学数据与光学测量的、空间和类型分辨的单个神经元活动。将透明电极缩小到单个神经元的长度尺度是具有挑战性的,因为传统的透明导体受到其电容电极/电解质界面的限制。在这项研究中,我们建立了具有高性能、高生物相容性的透明微电极阵列,并从最近开发的双层纳米网材料复合材料进行了全面的体内验证,其中金属层和低阻抗法拉第界面层可靠地堆叠在一起同一个透明纳米网图案中。具体来说,由 32 个双层纳米网微电极组成的柔性阵列具有近 100%的产率、高度的均匀性、优异的生物相容性,并且与最先进的无线记录和实时伪影消除系统高度兼容。这些电极具有很高的可扩展性,在 20μm 的直径下,在 1kHz 时的阻抗为 130kΩ,与非透明密歇根微电极阵列的性能相当。高度透明的双层纳米网微电极阵列允许在清醒小鼠的视觉皮层第 2/3 层中进行单个神经元的双光子成像,同时进行高保真、同时的电记录,通过在时域中测量视觉诱发电位,在多单元活动带和较低频率下都可以进行记录。总的来说,这些进展揭示了双层纳米网微电极透明阵列在神经科学和医学实践中的广泛应用中的巨大潜力。