Shoshin Daniil Evgenievich, Sizova Elena Anatolievna, Kamirova Aina Maratovna
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia.
Federal State Budgetary Educational Institution of Higher Education Orenburg State University, Orenburg, Russia.
Vet World. 2024 Aug;17(8):1880-1888. doi: 10.14202/vetworld.2024.1880-1888. Epub 2024 Aug 24.
The spread of antibiotic resistance and mineral depletion in soils encourages an intensive search for highly effective and environmentally safe bactericidal agents and sources of macro- and micro-elements. The most profitable solution would combine both the described tasks. Ultrafine particles (UFPs) have this functionality. Thus, this study aimed to analyze the bioluminescence and external morphological changes of cells after contact with MO and CoO UFPs at effective concentrations (ECs).
The antibiotic properties of the studied samples were determined on a multifunctional microplate analyzer TECAN Infinite F200 (Tecan Austria GmbH, Austria) by fixing the luminescence value of the bacterial strain (Ecolum, NVO Immunotech Closed Joint Stock Company, Russia). Morphological changes in the cell structure were evaluated using a Certus Standard EG-5000 atomic force microscope equipped with NSPEC software (Nano Scan Technology LLC, Russia).
The obtained results indicate high bactericidal properties of CoO and MnO UFPs (EC at 3.1 × 10 and 1.9 × 10 mol/L, respectively) due to the degradation of the cell wall, pathological increase in size, disruption of septic processes, and loss of cytoplasmic contents.
The prospects for the environmentally safe use of ultrafine materials are outlined. The limits of the dosages of CoO and MnO UFPs recommended for further study and in feeding farm animals are established (no more than 4.9 × 10 mol/L for MnO UFPs and 1.5 × 10 mol/L for CoO UFPs). The limitation of the work is the lack of experiments to determine the mechanisms of the toxic effect of UFP on bacteria, protein structures, and DNA and oxidative stress, which is planned to be performed in the future together with and studies on animals.
土壤中抗生素耐药性的传播和矿物质耗竭促使人们积极寻找高效且环境安全的杀菌剂以及常量和微量元素来源。最有利可图的解决方案是将上述两项任务结合起来。超细颗粒(UFPs)具有这种功能。因此,本研究旨在分析细胞在与有效浓度(ECs)的氧化钼(MO)和氧化钴(CoO)超细颗粒接触后的生物发光和外部形态变化。
通过在多功能酶标仪TECAN Infinite F200(奥地利Tecan Austria GmbH公司)上测定细菌菌株(俄罗斯NVO Immunotech封闭股份公司的Ecolum)的发光值,来确定所研究样品的抗生素特性。使用配备NSPEC软件的Certus Standard EG - 5000原子力显微镜(俄罗斯Nano Scan Technology LLC公司)评估细胞结构的形态变化。
所得结果表明,氧化钴和氧化锰超细颗粒具有很高的杀菌性能(有效浓度分别为3.1×10和1.9×10摩尔/升),这是由于细胞壁降解、大小病理性增加、败血症过程中断以及细胞质内容物丧失所致。
概述了超细材料在环境安全使用方面的前景。确定了推荐用于进一步研究以及喂养农场动物的氧化钴和氧化锰超细颗粒的剂量限制(氧化锰超细颗粒不超过4.9×10摩尔/升,氧化钴超细颗粒不超过1.5×10摩尔/升)。本研究的局限性在于缺乏确定超细颗粒对细菌、蛋白质结构和DNA的毒性作用机制以及氧化应激的实验,计划未来与动物研究一起进行这些实验。