Suppr超能文献

探索量子点药物负载能力的研究。

Exploring Research on the Drug Loading Capacity of Quantum Dots.

作者信息

Noel Kevin Jordan, Umashankar Marakanam S, Narayanasamy Damodharan

机构信息

Department of Pharmaceutics, SRM College of Pharmacy, Faculty of Medicine and Health Science, SRM Institute of Science and Technology, Chengalpattu, IND.

出版信息

Cureus. 2024 Aug 26;16(8):e67869. doi: 10.7759/cureus.67869. eCollection 2024 Aug.

Abstract

Quantum dots (QDs), also known as quantum nanodots or colloidal nanocrystals, possess unique visual and electrical properties that have enabled various applications in biomedicine, particularly in drug delivery. Quantum dots offer significant advantages, such as a high surface area for drug attachment, the ability to modify solubility and drug release patterns, and the potential for targeted delivery. This review covers various aspects of QD research, including their synthesis, properties, and the challenges associated with their use. Key challenges include concerns about QD toxicity, stability, and environmental impact. Additionally, the article discusses using quantum dot-Förster resonance energy transfer (QD-FRET) to study in vivo drug release kinetics. This capability is essential for evaluating the performance of QDs as drug carriers and understanding their interactions within biological systems. In summary, while QDs present promising opportunities for advancing drug delivery mechanisms, ongoing research is necessary to mitigate toxicity concerns and enhance their biocompatibility, paving the way for their clinical application in targeted therapies.

摘要

量子点(QDs),也被称为量子纳米点或胶体纳米晶体,具有独特的光学和电学性质,使其在生物医学领域,尤其是药物递送方面有了多种应用。量子点具有显著优势,例如药物附着的高表面积、改变溶解度和药物释放模式的能力以及靶向递送的潜力。本综述涵盖了量子点研究的各个方面,包括其合成、性质以及使用过程中相关的挑战。关键挑战包括对量子点毒性、稳定性和环境影响的担忧。此外,本文还讨论了利用量子点-福斯特共振能量转移(QD-FRET)来研究体内药物释放动力学。这种能力对于评估量子点作为药物载体的性能以及理解它们在生物系统中的相互作用至关重要。总之,虽然量子点为推进药物递送机制提供了有前景的机会,但仍需持续研究以减轻毒性担忧并增强其生物相容性,为其在靶向治疗中的临床应用铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec4/11424751/40f5ae5e9acb/cureus-0016-00000067869-i01.jpg

相似文献

1
Exploring Research on the Drug Loading Capacity of Quantum Dots.
Cureus. 2024 Aug 26;16(8):e67869. doi: 10.7759/cureus.67869. eCollection 2024 Aug.
2
Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.
Sensors (Basel). 2015 Jun 5;15(6):13288-325. doi: 10.3390/s150613288.
3
Quantum dots, lighting up the research and development of nanomedicine.
Nanomedicine. 2011 Aug;7(4):385-402. doi: 10.1016/j.nano.2010.12.006. Epub 2011 Jan 5.
5
Preparation and Characterization of Quantum Dot-Peptide Conjugates Based on Polyhistidine Tags.
Methods Mol Biol. 2021;2355:175-218. doi: 10.1007/978-1-0716-1617-8_16.
6
Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery.
Chembiochem. 2016 Nov 17;17(22):2103-2114. doi: 10.1002/cbic.201600357. Epub 2016 Sep 21.
7
Colloidal quantum dot light-emitting devices.
Nano Rev. 2010;1. doi: 10.3402/nano.v1i0.5202. Epub 2010 Jul 7.
8
A novel POSS-coated quantum dot for biological application.
Int J Nanomedicine. 2012;7:3915-27. doi: 10.2147/IJN.S28577. Epub 2012 Aug 2.
9
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
Anal Bioanal Chem. 2016 Jul;408(17):4475-83. doi: 10.1007/s00216-016-9434-y. Epub 2016 Mar 12.
10
Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy.
Theranostics. 2012;2(7):681-94. doi: 10.7150/thno.3692. Epub 2012 Jul 27.

引用本文的文献

1
Monoclonal Antibodies-Anchored Quantum Dots-Based Delivery Strategies for Glioblastoma Treatment: Challenges and Applications.
Adv Pharm Bull. 2025 Jun 2;15(2):341-358. doi: 10.34172/apb.025.44026. eCollection 2025 Jul.
2
Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems.
Beilstein J Nanotechnol. 2025 Aug 15;16:1350-1366. doi: 10.3762/bjnano.16.98. eCollection 2025.
3
Nanomaterials targeting cancer stem cells to overcome drug resistance and tumor recurrence.
Front Oncol. 2025 Jun 6;15:1499283. doi: 10.3389/fonc.2025.1499283. eCollection 2025.

本文引用的文献

1
Quantum Dots as Theranostic Agents: Recent Advancements, Surface Modifications, and Future Applications.
Mini Rev Med Chem. 2023;23(12):1257-1272. doi: 10.2174/1389557522666220405202222.
2
Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer.
J Mater Chem B. 2014 Jun 7;2(21):3190-3195. doi: 10.1039/c4tb00015c. Epub 2014 Apr 28.
4
Graphene quantum dots for cancer targeted drug delivery.
Int J Pharm. 2017 Feb 25;518(1-2):185-192. doi: 10.1016/j.ijpharm.2016.12.060. Epub 2017 Jan 2.
6
pH-Sensitive ZnO Quantum Dots-Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery.
ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22442-50. doi: 10.1021/acsami.6b04933. Epub 2016 Aug 19.
7
Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake.
Nanomedicine. 2016 Oct;12(7):1997-2006. doi: 10.1016/j.nano.2016.03.010. Epub 2016 Apr 13.
8
Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery.
Carbohydr Polym. 2015 May 5;121:477-85. doi: 10.1016/j.carbpol.2014.12.016. Epub 2014 Dec 30.
9
Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging.
Biomaterials. 2014 Apr;35(12):3885-94. doi: 10.1016/j.biomaterials.2014.01.041. Epub 2014 Feb 1.
10
Controlling release from pH-responsive microcapsules.
Langmuir. 2013 Oct 15;29(41):12697-702. doi: 10.1021/la403064f. Epub 2013 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验