Suppr超能文献

胶体量子点发光器件

Colloidal quantum dot light-emitting devices.

作者信息

Wood Vanessa, Bulović Vladimir

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nano Rev. 2010;1. doi: 10.3402/nano.v1i0.5202. Epub 2010 Jul 7.

Abstract

Colloidal quantum dot light-emitting devices (QD-LEDs) have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI). We review the key advantages of using quantum dots (QDs) in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs - optical excitation, Förster energy transfer, and direct charge injection - that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt). We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

摘要

胶体量子点发光器件(QD-LED)在诸如具有更高色彩饱和度的薄膜显示器以及具有高显色指数(CRI)的白光照明等应用中引起了广泛关注。我们回顾了在显示和照明应用中使用量子点(QD)的关键优势,包括其颜色纯度、溶液可加工性和稳定性。在强调了过去15年中QD-LED技术的主要发展之后,我们描述了用于激发量子点的三种机制——光激发、福斯特能量转移和直接电荷注入,这些机制已被用于制造QD-LED。我们概述了QD-LED发展面临的挑战,例如量子点薄膜中的量子点充电和量子点发光猝灭。我们描述了光学下转换方案如何使研究人员能够克服这些挑战,并开发出包含量子点的商业照明产品,以实现理想的色温以及高显色指数,同时保持与无机白光LED相当的效率(>65流明/瓦)。我们通过讨论量子点研究的一些当前方向来结束本文,这些方向专注于通过对发光量子点进行电激发来实现更高效率和空气稳定的QD-LED。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/523f/3215219/138cdd4f96f1/NANO-1-5202-g003.jpg

相似文献

1
Colloidal quantum dot light-emitting devices.
Nano Rev. 2010;1. doi: 10.3402/nano.v1i0.5202. Epub 2010 Jul 7.
2
Quantum dots for light emitting diodes.
J Nanosci Nanotechnol. 2013 May;13(5):3173-85. doi: 10.1166/jnn.2013.7146.
3
Advances in Quantum-Dot-Based Displays.
Nanomaterials (Basel). 2020 Jul 6;10(7):1327. doi: 10.3390/nano10071327.
4
Performance of light-emitting-diode based on quantum dots.
Nanoscale. 2013 Jun 21;5(12):5205-14. doi: 10.1039/c3nr00496a.
5
Recent Progress in Quantum Dot Based White Light-Emitting Devices.
Top Curr Chem (Cham). 2016 Aug;374(4):42. doi: 10.1007/s41061-016-0041-3. Epub 2016 Jun 14.
6
Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications.
Adv Mater. 2019 Aug;31(34):e1804294. doi: 10.1002/adma.201804294. Epub 2019 Jan 16.
8
Solution-Processed CuInS-Based White QD-LEDs with Mixed Active Layer Architecture.
ACS Appl Mater Interfaces. 2017 Mar 29;9(12):11224-11230. doi: 10.1021/acsami.6b15660. Epub 2017 Mar 16.
10
Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer.
Nano Lett. 2007 Aug;7(8):2196-200. doi: 10.1021/nl0703424. Epub 2007 Jul 7.

引用本文的文献

1
Quantum Dots for Resistive Switching Memory and Artificial Synapse.
Nanomaterials (Basel). 2024 Sep 29;14(19):1575. doi: 10.3390/nano14191575.
2
High-Performance Red Transparent Quantum Dot Light-Emitting Diodes via Fully Solution-Processed MXene/Ag NWs Top Electrode.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54189-54198. doi: 10.1021/acsami.4c11431. Epub 2024 Sep 26.
3
5
A Review on Multiple I-III-VI Quantum Dots: Preparation and Enhanced Luminescence Properties.
Materials (Basel). 2023 Jul 17;16(14):5039. doi: 10.3390/ma16145039.
6
MicroLED/LED electro-optical integration techniques for non-display applications.
Appl Phys Rev. 2023 Jun;10(2):021306. doi: 10.1063/5.0125103.
8
A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals.
ACS Mater Au. 2022 Aug 7;2(6):641-654. doi: 10.1021/acsmaterialsau.2c00047. eCollection 2022 Nov 9.
9
Surface-Ligand-Modified CdSe/CdS Nanorods for High-Performance Light-Emitting Diodes.
ACS Omega. 2023 Jan 19;8(4):3762-3767. doi: 10.1021/acsomega.2c05730. eCollection 2023 Jan 31.
10
Nanostructured Luminescent Gratings for Sensorics.
Materials (Basel). 2022 Nov 18;15(22):8195. doi: 10.3390/ma15228195.

本文引用的文献

2
Selection of metal oxide charge transport layers for colloidal quantum dot LEDs.
ACS Nano. 2009 Nov 24;3(11):3581-6. doi: 10.1021/nn901074r.
3
Colloidal nanocrystals with molecular metal chalcogenide surface ligands.
Science. 2009 Jun 12;324(5933):1417-20. doi: 10.1126/science.1170524.
5
6
Contact printing of quantum dot light-emitting devices.
Nano Lett. 2008 Dec;8(12):4513-7. doi: 10.1021/nl8025218.
7
Towards non-blinking colloidal quantum dots.
Nat Mater. 2008 Aug;7(8):659-64. doi: 10.1038/nmat2222. Epub 2008 Jun 22.
8
"Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking.
J Am Chem Soc. 2008 Apr 16;130(15):5026-7. doi: 10.1021/ja711379k. Epub 2008 Mar 20.
9
Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer.
Nano Lett. 2007 Aug;7(8):2196-200. doi: 10.1021/nl0703424. Epub 2007 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验