Potts David S, Komar Jessica K, Jacobson Matthew A, Locht Huston, Flaherty David W
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
JACS Au. 2024 Jul 9;4(9):3501-3518. doi: 10.1021/jacsau.4c00398. eCollection 2024 Sep 23.
The structure of solvent molecules within zeolite pores influences the rates and selectivities of catalytic reactions by altering the free energies of reactive species. Here, we examine the consequences of these effects on the kinetics and thermodynamics of 1,2-epoxybutane (CHO) ring-opening with methanol (CHOH) in acetonitrile (CHCN) cosolvent over Lewis acidic (Zr-BEA) and Brønsted acidic (Al-BEA) zeolites of varying (SiOH) density. Despite ostensibly identical reaction mechanisms across materials, turnover rates depend differently on (SiOH) density between acid types. (SiOH) -rich Zr-BEA (Zr-BEA-OH) provides ∼10 times greater rates than a (SiOH) -poor material (Zr-BEA-F), while Al-BEA-OH and Al-BEA-F give turnover rates within a factor of 2. Zr-BEA-OH shows more positive activation enthalpies and entropies than Zr-BEA-F across the range of [CHOH], which reflect the displacement of solvent molecules and lead to greater rates in Zr-BEA-OH due to the dominant role of entropic gains. Measurements of the density and composition of solvent within the pores show that the (SiOH) nests within Zr-BEA-OH promote hydrogen-bonded solvent structures distinct from Zr-BEA-F, while the Brønsted acid sites confer interactions similar to (SiOH) nests and give solvent structures within Al-BEA-F that resemble those within Al-BEA-OH. Correlations between apparent activation enthalpies and CHO adsorption enthalpies show that interactions with solvent molecules give proportional changes to both CHO adsorption and ring-opening transition state formation. The differences in intrapore environment carry consequences for both rates and regioselectivities of epoxide ring-opening, as demonstrated by product regioselectivities that increase by a factor of 3 in response to changes in solvent composition and the type of acid site in the *BEA structure (i.e., Lewis or Brønsted). These results demonstrate the ability to control rates, regioselectivities, and adsorption thermodynamics relevant for industrially relevant liquid-phase reactions through the design of noncovalent interactions among solvating molecules, reactive species, and (SiOH) functions.
沸石孔道内溶剂分子的结构通过改变活性物种的自由能来影响催化反应的速率和选择性。在此,我们研究了这些效应在乙腈(CH₃CN)共溶剂中,1,2 - 环氧丁烷(C₄H₈O)与甲醇(CH₃OH)在不同(SiOH)密度的路易斯酸性(Zr - BEA)和布朗斯特酸性(Al - BEA)沸石上开环反应的动力学和热力学方面的影响。尽管各材料表面上反应机理相同,但不同酸类型的周转速率对(SiOH)密度的依赖方式不同。富含(SiOH)的Zr - BEA(Zr - BEA - OH)的反应速率比缺乏(SiOH)的材料(Zr - BEA - F)高出约10倍,而Al - BEA - OH和Al - BEA - F的周转速率相差不到两倍。在[CH₃OH]的整个范围内,Zr - BEA - OH比Zr - BEA - F表现出更正向的活化焓和熵,这反映了溶剂分子的位移,并且由于熵增的主导作用,使得Zr - BEA - OH中的反应速率更高。对孔内溶剂密度和组成的测量表明,Zr - BEA - OH中的(SiOH)巢促进了与Zr - BEA - F不同的氢键溶剂结构,而布朗斯特酸位点赋予的相互作用类似于(SiOH)巢,并在Al - BEA - F中产生了与Al - BEA - OH中相似的溶剂结构。表观活化焓与C₄H₈O吸附焓之间的相关性表明,与溶剂分子的相互作用会使C₄H₈O吸附和开环过渡态形成产生成比例的变化。孔内环境的差异对环氧化合物开环的速率和区域选择性都有影响,如产物区域选择性因溶剂组成和*BEA结构中酸位点类型(即路易斯酸或布朗斯特酸)的变化而增加了3倍所证明的那样。这些结果表明,通过设计溶剂化分子、活性物种和(SiOH)官能团之间的非共价相互作用,可以控制与工业相关的液相反应相关的速率、区域选择性和吸附热力学。