Suppr超能文献

帕金森病中的代谢网络连接紊乱:一种新型成像生物标志物。

Metabolic network connectivity disturbances in Parkinson's disease: a novel imaging biomarker.

作者信息

Chen Bei, Chen Xiran, Peng Liling, Liu Shiqi, Tang Yongxiang, Gao Xin

机构信息

Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 172, Tongzipo Road, Changsha City, Hunan Province, Changsha 410008, China.

College of Mathematics and Statistics, Chongqing Jiaotong University, Xuefu Road No. 66, Chongqing 400074, China.

出版信息

Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae355.

Abstract

The diagnosis of Parkinson's Disease (PD) presents ongoing challenges. Advances in imaging techniques like 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) have highlighted metabolic alterations in PD, yet the dynamic network interactions within the metabolic connectome remain elusive. To this end, we examined a dataset comprising 49 PD patients and 49 healthy controls. By employing a personalized metabolic connectome approach, we assessed both within- and between-network connectivities using Standard Uptake Value (SUV) and Jensen-Shannon Divergence Similarity Estimation (JSSE). A random forest algorithm was utilized to pinpoint key neuroimaging features differentiating PD from healthy states. Specifically, the results revealed heightened internetwork connectivity in PD, specifically within the somatomotor (SMN) and frontoparietal (FPN) networks, persisting after multiple comparison corrections (P < 0.05, Bonferroni adjusted for 10% and 20% sparsity). This altered connectivity effectively distinguished PD patients from healthy individuals. Notably, this study utilizes 18F-FDG PET imaging to map individual metabolic networks, revealing enhanced connectivity in the SMN and FPN among PD patients. This enhanced connectivity may serve as a promising imaging biomarker, offering a valuable asset for early PD detection.

摘要

帕金森病(PD)的诊断一直面临挑战。像18F-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG PET)这样的成像技术进展突出了PD中的代谢改变,但代谢连接组内的动态网络相互作用仍然难以捉摸。为此,我们检查了一个包含49名PD患者和49名健康对照的数据集。通过采用个性化代谢连接组方法,我们使用标准摄取值(SUV)和詹森-香农散度相似性估计(JSSE)评估了网络内和网络间的连通性。利用随机森林算法来确定区分PD与健康状态的关键神经影像特征。具体而言,结果显示PD患者的网络间连通性增强,特别是在躯体运动(SMN)和额顶叶(FPN)网络内,在多次比较校正后仍然显著(P < 0.05,Bonferroni校正用于10%和20%的稀疏度)。这种改变的连通性有效地将PD患者与健康个体区分开来。值得注意的是,本研究利用18F-FDG PET成像来绘制个体代谢网络,揭示了PD患者中SMN和FPN之间增强的连通性。这种增强的连通性可能作为一种有前景的影像生物标志物,为早期PD检测提供有价值的依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验